
Active Bayesian Assessment for Black-Box Classifiers 

Overview: Active Bayesian Assessment

Bayesian Assessment with Uncertainty
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‣ Estimation: How accurate? 
‣ Identification: Where is the model least accurate? 
‣ Comparison: Is the model fair, e.g. equally accurate across different groups? 
(Can replace accuracy with other performance metrics, e.g., calibration metrics)
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‣ How much confidence should we have in this assessment? 
‣ How best to increase our confidence given a limited budget for labeled data?

Requires labeled data!
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Active Assessment with Thompson Sampling

‣ Key assumption: availability of a pool of unlabeled data 
‣ Main idea: we propose to actively labeling data points by iterating between 

labeling and assessing 
‣ Assessment model: Bayesian assessment for confidence quantification 
‣ Select unlabeled data: Thompson Sampling

prior label outcome likelihoodposterior

Performance metric of interest θ
Labeled data: D = {(xi, yi) | i = 1,2,⋯, N}, label outcome: zi = 1(yi = ̂yi)
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Our method

Baseline

95%

‣ Developed a general Bayesian framework to assess classification 
performance metrics, including 
‣ (1) accuracy, reliability diagram, ECE; 
‣ (2) performance difference; 
‣ (3) confusion matrix, misclassification cost, etc 

‣ Developed an active assessment framework for  
‣ (1) estimation of model performance; 
‣ (2) identification of model deficiencies; 
‣ (3) performance comparison between groups 

‣ Demonstrated that our proposed approaches need significantly fewer 
labels than baselines

Our Contribution:

‣ Percentage of labeled samples needed to identify the least accurate 
classes dropped by 71% 

‣ We obtained similar performance gain for other assessment tasks (full 
results in paper)

e.g. accuracy of the -th predicted class:k
p(θk) = Beta(θk; αk, βk),  qθ(zi) = Bern(zi; θk)

CIFAR100 
‣ 100 balanced classes 
‣ 50,000 images for training 
‣ 10,000 images for testing 
‣ prediction model: ResNet 

model with110 layers  
‣ overall accuracy on all test 

data: ~80%

‣  are task specific.  is the prior distribution of metric ,  
is likelihood of the label outcome  for the -th group, and  is the 
corresponding reward function.
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