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Introduction

Goal: Evaluate blackbox classifiers online in new environments after they have 
been trained.
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● Neural network models are being widely deployed as blackbox classifiers.

● It has been recognized that deep neural networks can be miscalibrated.1 

● We propose a Bayesian framework for assessing performance 
characteristics of black-box classifiers, which enables third parties to infer 
on quantities such as accuracy and calibration bias, as well as measure 
uncertainty in their estimates.

● We use our framework to design efficient labeling methods which quickly 
identify weaknesses of blackbox classifiers.

Approach
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Model: ResNet-1102

Dataset: CIFAR-1003

Experiments

● Measure posterior accuracy and 

calibration bias of model 

predictions on test set, where     

R
k
  : class k predicted by model

● Draw samples from posterior to 

form Monte-Carlo estimates of 

most and least accurate classes

Observations

● Calibration bias mostly affects 

inaccurate classes.

Idea

Use Thompson sampling-based 

approach to efficiently determine 

most accurate/biased classes.

Algorithm

● Sample accuracies/biases from 

posterior.

● Determine least accurate/most 

biased class according to sample.

● Obtain label for a data point with 

least accurate/most biased class.

● Update posteriors.

Success rates of Thompson sampling vs. 
random selection strategy as a function of 
the number of queries submitted to the 
oracle. Averaged over 100 runs.
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Conclusion
● Bayesian methods show promise for blackbox model assessment, allowing 

for uncertainty quantification in estimates of calibration and accuracy

● We also show how our framework can be used to quickly identify potential 
issues in a deployed model (e.g., least calibrated class predictions)


