Bayesian Evaluation of Black-Box Classifiers

Disi Ji¹ Robert Logan¹ Padhraic Smyth¹ Mark Steyvers² Departments of ¹Computer Science and ²Cognitive Science, University of California, Irvine

Introduction

Goal: Evaluate blackbox classifiers online in new environments after they have been trained.

Bayesian Reliability Diagram

Predicted as Tiger with p(y|x) = 0.99

Predicted as Television with p(y|x) = 0.99

- Neural network models are being widely deployed as blackbox classifiers.
- It has been recognized that deep neural networks can be miscalibrated.¹
- propose a Bayesian framework for assessing performance We characteristics of black-box classifiers, which enables third parties to infer on quantities such as accuracy and calibration bias, as well as measure uncertainty in their estimates.
- We use our framework to design efficient labeling methods which quickly identify weaknesses of blackbox classifiers.

Approach

- For a blackbox classifier M and input x, denote normalized output as $p_M(k|x), k = 1, 2, \dots, K$
- > Predicted label on x made by M is $\hat{y}_M = \arg \max p_M(k | x)$

Local score(**confidence**): for a given *x*, score the model assigned to the predicted label

Classwise Accuracy and Calibration Bias

Model: ResNet-110² **Dataset**: CIFAR-100³

Experiments

- Measure posterior accuracy and calibration bias of model predictions on test set, where R_{k} : class k predicted by model
- Draw samples from posterior to form Monte-Carlo estimates of

 $S_M(x) = p_M(\hat{y}_M | x)$ Model's own assessment of accuracy at x

Local accuracy: for a given x, probability that predicted label is the same as true label y True accuracy, need to be evaluated with true label y $A_M(x) = p(y = \hat{y}_M | x)$

> Empirical estimation of accuracy needs labeled data. When getting true label is expensive, estimating accuracy can be costy.

Accuracy over a region: expectation of local accuracy over region *R*: $A_M(R) = E_{p(x|x \in R)} A_M(x) = \int_{R} p(y = \hat{y}_M | x) p(x | R) dx$

- Accuracy $A_M(R) \in [0,1]$ is an unknown Bernoulli parameter. Generative process:
 - Accuracy over region R: $A_M(R) \sim Beta(a, b)$
 - For $i = 1, 2, \dots, N$:
 - $x_i \sim p_R(x)$ and model makes prediction on it \hat{y}_i
 - Query true label: $1(y_i = \hat{y}_i) \sim Bern(A_M(R))$
- Posterior of accuracy gets updated in closed form as more labels get revealed.
- By **partitioning** the data space *D* into disjoint subsets
 - finer grained estimation of model characteristics can be conducted on the each subset to have more comprehensive assessment of model performance in environment p(x, y):

most and least accurate classes

Observations

• Calibration bias mostly affects inaccurate classes.

Active Learning to Find Extreme Classes

Idea

Use Thompson sampling-based approach to efficiently determine most accurate/biased classes.

Algorithm

- Sample accuracies/biases from posterior.
- Determine least accurate/most biased class according to sample.
- Obtain label for a data point with least accurate/most biased class.

Success rates of Thompson sampling vs. random selection strategy as a function of the number of queries submitted to the

oracle. Averaged over 100 runs.

Number of Queries

$$A_M(R_k) = E_{p(x|x \in R_k)} A_M(x) = \int_{R_k} p(y = \hat{y}_M | x) p(x | k) dx$$

• Denote each $A_M(R_k) = \theta_k$, model accuracy over each region independently with

$$\theta_k \sim Beta(a_k, b_k)$$

- Examples of different partitions:
 - For modeling reliability diagram: $R_k = \{x \mid S_M(x) \in [\frac{k}{10}, \frac{k+1}{10})\}$
 - For modeling classwise accuracy: $R_k = \{x | \hat{y}_M = k\}$

Local calibration error: for a given x, the difference between local accuracy and confidence $CE_{\mathcal{M}}(x) = \Delta \left(S_{\mathcal{M}}(x) - A_{\mathcal{M}}(x) \right)$

A model at x is

• calibrated if $S_M(x) = A_M(x)$ • overconfident if $S_M(x) > A_M(x)$ Calibration bias: $\Delta(a, b) = a - b$

• Update posteriors.

Conclusion

- Bayesian methods show promise for blackbox model assessment, allowing for uncertainty quantification in estimates of calibration and accuracy
- We also show how our framework can be used to quickly identify potential issues in a deployed model (e.g., least calibrated class predictions)

References

- 1. Guo, Chuan, et al. "On calibration of modern neural networks." Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.
- 2. He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and *Pattern ecognition*, pp. 770–778, 2016.
- 3. Krizhevsky, A. and Hinton, G. Learning multiple layers of features from tiny images. Technical report, Citeseer, 2009.

For any questions, email: disij@uci.edu