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I Introduction I Results on CLL Dataset

= Traditional analysis of flow
cytometry data involves an
inefficient manual feature
extraction process called gating.
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Chronic lymphocytic leukemia (CLL) clinical data with
measurements from 107 individuals, 65 positive, 42 negative
across two panels. The model gets similar accuracy to expert
analysis, and places gates in the same regions as experts. The
panel below shows learning of gates for the one of the panels:
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= Prior work applying machine
learning techniques to sample
diagnosis has focused on learning
features separately from
classification.
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= We optimize features and classifier
parameters simultaneously, using P |
a fully differentiable model to '
learn discriminative interpretable
features.
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= Data consists of N cell samples, each sample consisting of a
matrix of N. rows (cells) with each column corresponding to
a different marker measurement. For multi-panel data
there are multiple such matrices per sample.
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Convergence of the loss, and learned accuracy (below). The
difference between model learned accuracy and accuracy using
DAFI (a gating algorithm that relies on expert-placed gates) is
not statistically significant.
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= Our model takes in a gating tree, with each node k in the
tree consisting of a pair of axes d,.
by applying sigmoidal gating functions with locations
parametrized by 9 at each node to each cell x

i Results on Simulated Data
ORI | rcsuiis on Simulated Data

. = Two class synthetic data generated from Gaussian mixture
(1 OS(:Ei dk 62 2))
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models with high amounts of noise.
= The model applies these gating functions along the tree —h
producing proportion features for each root to leaf path p: M1
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= A logistic regressor then uses these features to predict the
diagnosis probabilities for a sample. We train the model
using logistic loss plus regularization to make the gates
interpretable. We minimize the loss using SGD with Adam.
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It then learns features ' . . .
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= The accuracy as a function of number of training samples
used. Runtime scales linearly in number of samples.
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(a) Gating hierarchy of CLL
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(b) One node of the gating tree

For any questions, email: pputzel@uci.edu
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