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the practice of lending: Historically, it has been riddled with biases
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orientation. Such biases are evident in institutions’ choices in terms
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of who gets credit and on what terms. In this context, relying on
algorithms to make credit decisions instead of deferring to human
judgment seems like an obvious fix. What machines lack in warmth,
they surely make up for in objectivity, right?
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BACKGROUND 3

» Assessment machine learning models independently from the training procedures
» legal requirement, build consumers’ trust in model predictions
» distribution change at deployment time:
» label shift [Lipton et al. 2018]
» corruptions and perturbations [Hendrycks et al. 2019, Ovadia et al. 2019b]
» models’ inability to generalize [Recht et al. 201 9]
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» corruptions and perturbations [Hendrycks et al. 2019, Ovadia et al. 2019b]
» models’ inability to generalize [Recht et al. 201 9]

Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, Vaishaal Shankar

We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the
focus of intense research for almost a decade, raising the danger of overfitting to excessively re-
used test sets. By closely following the original dataset creation processes, we test to what extent
current classification models generalize to new data. We evaluate a broad range of models and
find accuracy drops of 3% - 15% on CIFAR-10 and 11% - 14% on ImageNet. However, accuracy
gains on the original test sets translate to larger gains on the new test sets. Our results suggest
that the accuracy drops are not caused by adaptivity, but by the models' inability to generalize to
slightly "harder" images than those found in the original test sets.
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OBJECTIVES OF BLACKBOX CLASSIFIER ASSESSMENT

-» How accurate?

-» How calibrated?

How fair?

|
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And how much confidence should
we have in this assessment?

» How to increase our confidence
given the labeling budget?
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ROAD MAP :

Bayesian assessment active Bayesian assessment : assess with unlabeled data

2. Reduce uncertainty of assessment, with : 3. Reduce uncertainty of assessment, by
actively labeled data selected from a pool : leveraging both labeled and unlabeled
data

1. Quantify uncertainty of assessment
with Bayesian methods, with a set of

labeled data of unlabeled data
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A A Model score: pM(k | x) [O.QA 0.1, 0.01, ...]

Ve — Predicted label: y Dog y = arg max; py(k|x)

Confidence(score): § 0.8 s = maxipy(k|x)
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PRELIMINARIES: NOTATION

Classifier
\,

Model score: py,(k|x)

Wisies

Predicted label: y

Confidence(score): §

px,y)
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PRELIMINARIES: NOTATION

Classifier
\

Sy - Model score: py,(k|x) [O.QAOJ, 0.01, ...]
QI Predicted label: Dog y = arg max, py(k|x)
Input: X |

Confidence(score): § 0.8 s = maxipy(k|x)

px,y)

label: y Dog
Accuracy 0 =E,,,1(y=7J)
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Accuracy O0=E,,,1(y=1Y)
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Empirical accuracy 0 = N Z 1(y; = y;)
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Beta posterior Beta prior Bernoulli likelihood
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BAYESIAN ASSESSMENT: HOW ACCURAIE :

Accuracy of the k-th predicted class:
Qk — Beta(ak, IB]{)’ k — 1,2,"‘, K
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BAYESIAN ASSESSMENT: HOW CALIBRATED :

Use self-assessment as informative prior:
assume the classifier is calibrated a priori
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Use self-assessment as informative prior:
assume the classifier is calibrated a priori
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BAYESIAN ASSESSMENT: HOW CALIBRATED
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SUMMARY

v/ How accurate?
v/ How calibrated?
: @ How fair?

classwise accuracy

Accuracy of the k-th predicted class:
Hk — Beta(ak, ﬂk)’ k — 1,2,"‘, K

10 ...other metrics...

binwise accuracy(ECE)

Accuracy of the b-th bin:

v And how much confidence should we 0, = Beta(a,, f,), b = 1,2, B

have in this assessment?

- @ How to increase our confidence given .
5@ the labeling budget? Classwise ECE

FEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEETSR ACcuracyOftheb'th b|n Ofthek'th
predicted class:

k=12,---K; b=1,2,---,B
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ROAD MAP ‘

active Bayesian assessment

2. Reduce uncertainty of assessment, with
actively labeled data selected from a pool
of unlabeled data

e supervised
optimizer :
learning

action outcome reward
a;=Jg Z; 1 =1(z]9)
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ASSESSMENT TASKS

Partition of |Index of
Input space |groups
classwise accuracy
Accuracy of the k-th predicted class: Predicted class g = k
(9k —_ Beta(ak,ﬂk),k —_ 1,2,"',K
binwise accuracy(ECE)
Accuracy of the b-th bin:
Model score =b
‘919 — Beta(ab,ﬁb),b — 1,2,"',B g
Classwise ECE
Accuracy of the b-th bin of the k-th Predicted class
predicted class: X
0., = Beta(ay,, 5, model score g = kb

k=12, K, b=1,2,---,B
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'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.
|

:performance metrics to estimate 6 = (6,,6,, ---, 6,
‘labeled data: {(x,y)|i = 1,2,, N}

label outcome (e.g. prediction correctness): z; = f;,(x;, ¥,

prior distribution of of metrics: 6 ~ p(0)
likelihood of label outcome: z; ~ g4(z)

p(0) - Hil q6(2;)
I@ p(@) - Hi-iﬂe(zi) do

posterior of metircs: p(0| D) =

NE




ASSESSMENT TASKS :

: Performance metrics to estimate 6 = (6,,9,, ---, 6;,)

‘) Estimation: estimate model performance across all groups[1]

o o . _ A 9) 1
, €.9. minimize RMSE = (Zpg(é’g — 05)°)2
8

:» ldentification: identify extreme groups, e.g. least accurate,
: least calibrated

» e.g.identify g = argmax, 0,
) Comparison: compare performance between two groups
» e.g.0,> 0,

[1] Sawade et al. [2010] and Kumar and Raj [2018] use importance sampling and stratified sampling respectively to allocate labeling
resources among different groups.
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ASSESSMENT TASKS ‘

: . . . 1.0 100%
: Performance metrics to estimate 8 = (6,,6,, ---, 6,;) : @ Reliability curve
: = 0.91 mmm Histo f
1 gram Ol scores
:)» Estimation: estimate model performance across all groups[1] : 0.8 1 - 80%
. e . A N : 0.7

, ©.g.minimize RMSE = (Zpg(é’g — 07)°)?
X g 5’0'6_ - 60%
:» ldentification: identify extreme groups, e.g. least accurate, 05
- least calibrated . 0%

» e.g.identify g = argmax, 0, 0.3
:» Comparison: compare performance between two groups 0.2 20%
. 0.1 -

» e.g.0,> 0,
= - 0.0 - 0%
FEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESN 0.0 0.1 020.30405060.708091.0

Score

B
ECE = ) pblfs — 51|
b=1

[1] Sawade et al. [2010] and Kumar and Raj [2018] use importance sampling and stratified sampling respectively to allocate labeling
resources among different groups.
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ASSESSMENT TASKS :

: Performance metrics to estimate 6 = (6,,9,, ---, 6;,)

‘) Estimation: estimate model performance across all groups[1]

o o . _ A 9) 1
, €.9. minimize RMSE = (Zpg(é’g — 05)°)2
8

:» ldentification: identify extreme groups, e.g. least accurate,
: least calibrated

» e.g.identify g = argmax, 0,
) Comparison: compare performance between two groups
» e.g.0,> 0,

[1] Sawade et al. [2010] and Kumar and Raj [2018] use importance sampling and stratified sampling respectively to allocate labeling
resources among different groups.
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ASSESSMENT TASKS ‘

Performance metrics to estimate 8 = (6,,6,, ---, 6.,

0.30 A

:» Estimation: estimate model performance across all groups[1]: keyboard
: . .. . A a2k motorcycle
: , ©.g.minimize RMSE = (Zpg(é’g 07)°)> : | sunfloveer
: g = 0.257 wardrobe
:» ldentification: identify extreme groups, e.g. least accurate, palm_tree
: least calibrated : skunk
- = 0.201 pickup truck
- ' ifv 0 = : apple
. > eg. identity ¢ = argmax, 0, . _— apple
:» Comparison: compare performance between two groups s @ 0151 seal bicycle
: " otter
. ) e.g. 90 > 91? - shrew
EIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII: 0.10— boy

bear

woOoInan

0054 couch

shark

baby

014 015 016 017 018 019 110

Accuracy

[1] Sawade et al. [2010] and Kumar and Raj [2018] use importance sampling and stratified sampling respectively to allocate labeling
resources among different groups.
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MULTI-ARMED BANDIT PROBLEMS k

reward probabilities of each arm are not told in advance

objective: maximize cumulative reward
exploration-exploitation trade-off
budget: decide when to switch from more exploration to more exploitation

vV VvV VvV VvV V9

Sequential decision making

Machine 1 Machine 2 Machine 3 Machine 4

Reward
50% 70% 35% 45% probabilities
are unknown.

Which machine
to pick next?

Label-efficient Bayesian Assessment of Black-box Classitfiers NE




ONLINE DECISION SYSTEM &

action outcome reward g
a; =4 Z; r; =1(zi|g)

Label-efficient Bayesian Assessment of Black-box Classitiers (1.2 UCIRVINE




ONLINE DECISION SYSTEM &

the gambler's decision process

estimated success rate

action outcome reward g
a; =g Z; r =1(Z|9)
pull an arm 0/1: win or lose $$ reward

slot machine

Label-efficient Bayesian Assessment of Black-box Classifiers (1.2 UCIRVINE




ONLINE DECISION SYSTEM .

» At i-th step, fit decision model to H,_,
: » Hi_y={(a,z)]j=12,-,i— 1}
> If the gambler is frequentist...

.y 0=0

» If the gambler is Bayesian...

the gambler's decision process

» Supervised learning: p,_{(6)

L 60~ p,1(0): Thompson sampling

action outcome reward g
a; =g Z; r =1(Z|9)
pull an arm 0/1: win or lose $$ reward

slot machine

Label-efficient Bayesian Assessment of Black-box Classifiers 1} UCIRVINE




THOMPSON SAMPLING: EXAMPLE

=10

N =100

—— actionl, a=84, =13 |
--- action2, a=3, =4

- 12 -
—— actionl,a=1, =1 [ f— actionl, a=7, =1
1.047 ___ action2, a=1, =1 61 --- action2,a=3, =3 10 -
2
% 1.02 - 5 g -
S 4
£ 1.00 6-
;g 3
'S 0.98 - y 4
A
1 - 2-
0.96 -
O -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0

Mean reward Mean reward

> True reward distributions :
. » action1: r ~ Bern(0.8) :
» action2: r ~ Bern(0.2) :

02 04 06 08 1.0
Mean reward
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THOMPSON SAMPLING: EXAMPLE ;

. 7 - . 12 - .
—— actionl,a=1, B=1 —— actionl,a=7, B=1 —— actionl, a=84, =13 |
1047 ___ action2, a=1, =1 6141 --- action2, a=3, =3 104 --- action2, a=3, =4
2
% 1.02 - 5 g -
S 4
£ 1.00 6 -
;g 3
"8 0.98 - y 4
o
A,
]. 7] 2 | TS S~ J
0.96 - - S~
0- op=="— T _
0.0 0.2 0.4 0.0 0.8 1.0 0.0 0.2 0.4 0.0 0.8 1.0 0.0 0.2 0.4 0.0 0.8 1.0
Mean reward Mean reward Mean reward
a
€ 1.0-
............................................................ <
:» True reward distributions: = 08-
» action1:r ~ Bern(0.8) : £
. : @ 0.0
» action2: r ~ Bern(0.2) i
N EEEEEEEEE s EEEEEEEEEEEEEEsEEEEEEEEEEEEEEEsEEEEEEEEEES : &
S 0.4 A
kS
>
g 0.2
a
&
$ 0.0-

0 20 40 60 80 100
N
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ACTIVE BAYESIAN ASSESSMENT 0

active Bayesian assessment

pi0p) & p;_1(05)q4(z; | 8)
§ « argmax E_ [r(z]|g)]
g

action

outcome reward

N\

a; =9 Zi r; =1(z9)
Query the label of a label outcome r: task-specific reward function
data point from the classifier M

selected group
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ACTIVE BAYESIAN ASSESSMENT 0

active Bayesian assessment ——

pi0p) & p;_1(05)q4(z; | 8)

§ « argmax E_ [r(z]|g)]
8

action

outcome reward

N\

a; =9 Zi r; =1(z9)
Query the label of a label outcome r: task-specific reward function
data point from the classifier M

selected group
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ACTIVE BAYESIAN ASSESSMENT 0

pi0p) & p;_1(05)q4(z; | 8)
§ « argmax E_ [r(z]|g)]
g

action

outcome reward

a; =9 Zi r; =1(z9)
Query the label of a label outcome r: task-specific reward function
data point from the classifier M

selected group
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ACTIVE BAYESIAN ASSESSMENT 2

Assessment Task p(0) q0(2|9) r(zlg)

Estimation Groupwise Accuracy 6, ~ Beta(a,,8,) 2z~ Bern(8,) p,-(Var(6,|L) — Var(6,|{L,z}))
Confusion Matrix(g = k) 6., ~ Dirichlet(a.x) 2z ~ Multi(6x) px - (Var(0x|L) — Var(6x|{L, z}))

Identification Least Accurate Group 0, ~ Beta(ay,,8,) 2z~ Bern(§,) —0

g
Least Calibrated Group 6, ~ Beta(agw, B4p) 2 ~ Bern(6,) S L Db Oy — Sgb
Most Costly Class(g = k) 6 ~ Dirichlet(a.x) 2z ~ Multi(6y) Zle cirbk

Comparison  Accuracy Comparison 0, ~ Beta(ay,,8,) 2z~ Bern(6,) ML, (g,2)}

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
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ACTIVE BAYESIAN ASSESSMENT 2

Assessment Task p(6) q9(z|9) r(z|g)

Estimation Groupwise Accuracy 6, ~ Beta(a,,8,) 2z~ Bern(8,) p,-(Var(6,|L) — Var(6,|{L,z}))
Confusion Matrix(g = k) . 6k ~ Dirichlet(a.xy) 2z ~ Multi(6x) px- (Var(6x|L) — Var(6x|{L,2}))

Identification Least Accurate Group 0, ~ Beta(ay,,8,) 2z~ Bern(§,) -0,
Least Calibrated Group - 6, ~ Beta(ag, Bp) 2 ~ Bern(fy,) S L Db O — Sgb
Most Costly Class(g = k) . 6.4 ~ Dirichlet(a.x) 2z ~ Multi(6x) Zszl cirbk
Comparison  Accuracy Comparison 0, ~ Beta(ay,,8,) 2z~ Bern(6,) M{L, (g,2)}
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ACTIVE BAYESIAN ASSESSMENT 2

Assessment Task p(0) q0(2|9) r(zlg)

Estimation Groupwise Accuracy 6, ~ Beta(a,,8,) 2z~ Bern(8,) p,-(Var(6,|L) — Var(6,|{L,z}))
Confusion Matrix(g = k) 6., ~ Dirichlet(a.x) 2z ~ Multi(6x) px - (Var(0x|L) — Var(6x|{L, z}))

Identification Least Accurate Group 0, ~ Beta(ay,,8,) 2z~ Bern(§,) —0

g
Least Calibrated Group 6, ~ Beta(agw, B4p) 2 ~ Bern(6,) S L Db Oy — Sgb
Most Costly Class(g = k) 6 ~ Dirichlet(a.x) 2z ~ Multi(6y) Zle cirbk

Comparison  Accuracy Comparison 0, ~ Beta(ay,,8,) 2z~ Bern(6,) ML, (g,2)}
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ACTIVE BAYESIAN ASSESSMENT

Assessment Task p(0) q0(2|9) r(z|g)
Estimation Groupwise Accuracy 6, ~ Beta(a,,8,) 2z~ Bern(6,) p,- (Var(ég L) — Var(ég {L,2}))

Confusion Matrix(g = k) 64 ~ Dirichlet(a.x) 2z ~ Multi(6) px - (Var(é;c L) — Var(é;c {L,2}))
Identification Least Accurate Group 0, ~ Beta(ay,,8,) 2z~ Bern(§,) —59

Least Calibrated Group 6, ~ Beta(agz, Bp) 2 ~ Bern(fy,) S L Db ggb Sgb

Most Costly Class(g = k) 6. ~ Dirichlet(a.x) 2z ~ Multi(6y) Zj{zl cjké;-k
Comparison  Accuracy Comparison 0, ~ Beta(ay,,8,) 2z~ Bern(6,) ML, (g,2)}
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ACTIVE BAYESIAN ASSESSMENT 2

Assessment Task p(0) q0(2|9) r(z|g)

Estimation Groupwise Accuracy 0, ~ Beta(ay,B,) 2z~ Bern(0,) p,-(Var(6,|L) — Var(0,|{L, z}))
Confusion Matrix(g = k) 6., ~ Dirichlet(a.x) 2z ~ Multi(6x) px - (Var(0x|L) — Var(6x|{L, z}))

Identification Least Accurate Group 0, ~ Beta(ay,,8,) 2z~ Bern(§,) -0,
Least Calibrated Group 6, ~ Beta(agz, Bp) 2 ~ Bern(fy,) S5 Db [0 — Sgb
Most Costly Class(g = k) 6 ~ Dirichlet(a.x) 2z ~ Multi(6y) Zj{zl cirbk
Comparison  Accuracy Comparison 0, ~ Beta(ay,,8,) 2z~ Bern(6,) M{L, (g,2)}

previously labeled data

'

r(zlg) = p, - (Var(@,| Z£) — Var(0,| { Z.z}))

! !

group probability reduction of posterior variance

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
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EXPERIMENTS: MATERIAL

» Difference mode, varying size and number of classes
» Kudos to Robby for training the classification models

Mode Size Classes Model
CIFAR-100 Image 10K 100 ResNet-110
ImageNet Image 50K 1000  ResNet-152
SVHN Image 26K 10 ResNet-152
20 Newsgroups Text 7.9K 20 BERTgASE
DBpedia Text 70K 14 BERTRASE

22

Label-efficient Bayesian Assessment of Black-box Classitfiers

NE




EXAMPLE: IDENTIFY THE LEAST ACCURATE CLASS :

Percentage of labeled samples needed to identify the least accurate classes

Dataset Top m UPrior [Prior [Prior-+TS

(baseline)  (our work) (our work)
CIFAR-100 1 81.1 83.4 24.9
10 99.8 99.8 55.1

ImageNet 1 96.9 94.7 9.3 Dropped by 90%

10 99.6 08.5 17.1
SVHN 1 90.5 89.8 82.8
3 100.0 100.0 96.0
20 Newsgroups 1 53.9 55.4 16.9
3 92.0 92.5 42.5
DBpedia 1 8.0 7.6 11.6
3 91.9 90.2 57.1

Label-efficient Bayesian Assessment of Black-box Classitfiers NE




EXAMPLE: IDENTIFY THE LEAST ACCURATE CLASS

Percentage of labeled samples needed to identify the least accurate classes

Dataset Top m UPrior [Prior [Prior-+TS
(baseline)  (our work) (our work)
CIFAR-100 1 81.1 83.4 24.9
10 99.8 99.8 55.1
ImageNet 1 96.9 94.7 9.3
10 99.6 08.5 17.1
SVHN 1 90.5 89.8 82.8
3 100.0 100.0 96.0
20 Newsgroups 1 53.9 55.4 16.9
3 92.0 92.5 42.5
DBpedia 1 8.0 7.6 11.6
3 91.9 90.2 57.1

We obtained similar performance gain across multiple datasets, prediction models, and

assessment tasks

Dropped by 90%

Label-efficient Bayesian Assessment of Black-box Classitfiers
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DISCUSSION g

» Other Bayesian active learning method to TS?
» Comparisons with alternative active learning algorithms
» e.g. Epsilon-greedy, Bayesian upper-confidence bound
» Thompson sampling is broadly more reliable and more consistent

» TS is not designed for exploration-only problems (best arm identification)
» Comparisons between TS and top-two TS
» TS and TTTS gave very similar performance

» Sensitivity analysis for hyperparameters
» appears to be relatively robust to the prior strength

Label-efficient Bayesian Assessment of Black-box Classitfiers NE




ROAD MAP

Label-efficient Bayesian Assessment of Black-box Classitfiers
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assess with unlabeled data

3. Reduce uncertainty of assessment, by
leveraging both labeled and unlabeled

data

r
Scores with Scores with
observed labels unobserved labels

Model
Scores 4
/@\
Calibration
Recalibrated parameters
Scores

|
[y
~
—.
]
ol T
AR
B <
{

NE
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IS THE CLASSIFIER REALLY UNFAIR?

CIaSS|f|ed as negatlve

ClasS|f|ed as positive

O 0|~6 b

'IF'IF'IP'IP'IFE'IP'IF'II“'IF'IF'----->

model score of a binary classifier M
» Equality of opportunity: equal TPR across different groups!'!

» “people who pay back their loan, have an equal opportunity of getting the loan in the first place”

» Due to small sample size, the estimated TPR is noisy!

[1] “Equality of Opportunity in Supervised Learning”. Hardt, Price & Srebro. NeurlPS 2016.
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MODEL FAIRNESS METRICS WITH UNCERTAINTY g

Classified as negative Classified as positive

score of a classifier M

Point estimation of ATPR

100.0% -80.0% -60.0% -40.0% -20.0% 0.0% 20.0% 40.0% 60.0%

ATPR between female and male
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MODEL FAIRNESS METRICS WITH UNCERTAINTY g

Classified as negative

Classified as positive

ATPR=2/3-5/5=-1/3

score of a classifier M

Point estimation of ATPR

Posterior of ATPR

100.0% -80.0% -60.0% -40.0% -20.0% 0.0% 20.0% 40.0% 60.0%

ATPR between female and male
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MODEL FAIRNESS METRICS WITH UNCERTAINTY g

Classified as negative

Classified as positive

ATPR=2/3-5/5=-1/3

score of a classifier M

Point estimation of ATPR

Posterior of ATPR Q: The uncertainty is high! How to reduce it?

A: Collect more data! Labeled or unlabeled!

100.0% -80.0% -60.0% -40.0% -20.0% 0.0% 20.0% 40.0% 60.0%

ATPR between female and male

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
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HIGH UNCERTAINTY FOR REAL-WORLD DAIA &

Adult, Gender Bank, Age
100% 100% v v
ad
n,
= 50% ' 50%
5
S 0%
-
D
<
% -50% -50%
A ,
-100% -100% A
50 100 200 50 100 200
n; ng
whether income exceeds whether the individual has
$50,000 per year subscribed to a term deposit

account or not

100%

50%

0%

-50%

-100%

Compas-R, Race

50 100 200
np

COMPAS (Correctional Offender
Management Profiling for Alternative
Sanctions) risk assessment tool for
recidivism

frequency-based estimates of the difference in true positive rate (TPR)

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
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HOW MANY LABELED DATA DO I NEED T0 COLLECT? =

» Simulation:
» p(g=0)=20%
» groupwise positive rates p(y = 1) are both 20%
» the true groupwise TPRs are 95% and 90%.

» Compute frequentist estimation of ATPR for 10000 times

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
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HOW MANY LABELED DATA DO | NEED T0 COLLECT? =

» Simulation:
» p(g=0)=20%
» groupwise positive rates p(y = 1) are both 20%
» the true groupwise TPRs are 95% and 90%.

» Compute frequentist estimation of ATPR for 10000 times

>96k

100.00% 1

80.00% -

60.00% -
-== 93%
40.00% A

N

P(A€[0.04,0.06])

20.00% A

0.00%

0 20000 40000 60000 30000 100000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
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HOW MANY LABELED DATA DO | NEED TO COLLECT?

» Simulation:
» p(g=0)=20%
» groupwise positive rates p(y = 1) are both 20%
» the true groupwise TPRs are 95% and 90%.

» Compute frequentist estimation of ATPR for 10000 times

>96k
100.00% 1 N
. 80.00% - Dataset Test Size G p(g=0) ply=1)
é Adult 10054 gender, race (.68, 0.86 0.25
< 60.00% - - oso Bank 13730 age 0.45 0.11
S 40.00% - ’ German 334 age, gender (.79, 0.37 0.17
W | Compas-R 2056 gender, race 0.7, 0.85 0.69
<§: 20.00% - Compas-VR 1337 gender, race 0.8, 0.34 0.47
Ricci 40 race 0.65 0.50
0.00%

0 20000 40000 60000 30000 100000
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REDUCE UNCERTAINTY OF FAIRNESS WITH MORE UNLABELED DATA-

ment of Black-box Classifiers

Assess

Label-efficient Bayesian



REDUCE UNCERTAINTY OF FAIRNESS WITH MORE UNLABELED DATA-

Classified as negative Classified as positive

O - Method: train a hierarchical Bayesian -
m calibration model to predict the model :

=50 i o1
i
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ASSESS FAIRNESS WITH BAYESIAN CALIBRATION

Hyperprior

Prior e
Scores with Scores with
observed labels unobserved labels
Model
Scores

Calibration

Recalibrated parameters
Scores
i=1,'“,nL j:l,-..,nu
Classes g
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31

ASSESS FAIRNESS WITH BAYESIAN CALIBRATION

Hyperprior
train: estimate groupwise
calibration functions with g e
rior
parameters ¢,

—— Male

Compas-VR, Gender Scores with Scores with
— Female observed labels unobserved labels

Model
Scores
Calibration

Recal ibrated p arameters
® Scores
0.0 0.2 0.4 0.6 0.8 1.0
i=1,-,n j=1,,ny
Classes g

.......................................................................................................................................................................................................
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ASSESS FAIRNESS WITH BAYESIAN CALIBRATION

Hyperprior

Prior e
Scores with Scores with
observed labels unobserved labels
Model
Scores

Calibration

Recalibrated parameters
Scores
i=1,'“,nL j:l,-..,nu
Classes g
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Hyperprior
Prior e

ASSESS FAIRNESS WITH BAYESIAN CALIBRATION

/ observed labels

Model
Scores

Recalibrated
Scores

Scores with

9,

Calibration
parameters

Scores wit

ith
unobserved Ialh

j — 1, ...,nU
Classes g

31

predict: generate estimates of
the groupwise metrics 6, and
the difference in metrics A

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
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ASSESS FAIRNESS WITH BAYESIAN CALIBRATION(BC) =
Hyperpraor

» #labeled data in some groups is small: . e

use Hierarchical Bayesian calibration to

share statistical strength among groups —r S

observed labels unobserved labels

» Variance of the estimates is high: Lodel 9 @

augment with unlabeled data by @

predicting labeling outcomes with BC

Calibration
Recaligrated @ parameters a
cores

» Calibration model: any parametric

calibration model, e.g. Beta calibration

Label-efficient Bayesian Assessment of Black-box Classitfiers NE




EXAMPLE: ASSESS DELTA TPR OF COMPAS RECIDIVISM =

40% -
35% -
30%:
25% -
20% -
159%/-

0% -

or in Estimating ATPR

5% -

NG
g /0 7

101 102 103
#labeled data points

With 10 labeled data and ~2000 unlabeled data, error in estimating TPR is 5% for our
method versus 20% with only labeled data

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
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EXAMPLE: ASSESS DELIA TPR OF COMPAS RECIDIVISM -

40% -
r 35%
¥
= 30% - . :
< Traditional method, without unlabeled data
@)
8 25% -
©
o/. _
%20/0 (). ..
[ 15%/-
5
FS 0% - "o
O/ : -.‘...
1Ay . L
e [ e — Dy
LA .
101 102 103

#labeled data points

With 10 labeled data and ~2000 unlabeled data, error in estimating TPR is 5% for our
method versus 20% with only labeled data

We obtained similar performance gain across multiple dataset-attribute combinations,
prediction models, and fairness metrics
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DISCUSSION

» bias-variance tradeoff

» potential error in the calibration mapping (e.g., due to misspecification of the
parametric form of the calibration function) to error in the estimate of A itself

Lemma 4.5.1. Given a prediction model M and score distribution P(s), let f,(s;¢,) :

0,1] — |0,1] denote the calibration model for group g; let f3(s) : |0,1] — [0,1] be the optimal

calibration function which maps s = Py (y = 1|g) to P(y = 1|g); and A* is the true value

of the metric. Then the absolute error of the expected estimate w.r.t. ¢ can be bounded as:

EsA — A" < |[fo— fells + [1fr = fill1, where fy(s)
the expected L1 distance w.r.t. P(s|g).

U5, fq(8;0g), Vs € [0,1], and || - |[1 is

34
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DISCUSSION s

» Calibration of the posterior probability
» a perfectly calibrated 95% credible interval would have 95% coverage.
» generally not far from 95% there is room for improvement (model misspecification)

» How about other calibration models?
» comparisons with an alternative calibration model, i.e. LLO calibration
» two calibration methods tends to be very similar

» Is the hierarchical structure necessary?
» ablation study by comparing with non-hierarchical Bayesian calibration
» Hierarchical structure helps with avoiding occasional catastrophic errors

» Sensitivity analysis for the calibration priors
» robust to the settings of prior variances
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THESIS CONTRIBUTIONS

Bayesian assessment

1. Quantify uncertainty of assessment with
Bayesian models, with a set of labeled data

0.30 A

0.25 A1

0.20 A

0.05 A

1 seal

{ boy

keyboard

motorcycle
sunflower
wardrobe
palm tree
skunk

: pickup truck

&7 apple

e castle

bicycle

lizard —

otter
shrew

bear
woman
couch
shark
baby

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

active Bayesian assessment

2. Reduce uncertainty of assessment, with
actively labeled data selected from a pool of
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Use self-assessment as informative priors Developed a set of Thompson sampling algorithms
Bayesian assessment - active Bayesian assessment : assess with unlabeled data
1. Quantify uncertainty of assessment with ~ : 2.Reduce uncertainty of assessment, with : 3. Reduce uncertainty of assessment, by

Bayesian models, with a set of labeled data : actively labeled data selected from a pool of : |everaging both labeled and unlabeled data
. unlabeled data :

] . . Hyperpri
0-30 keyboard . yperprio
skunk

0.20 A

|
motorcycle . -
sunflower - "
0.251 wardrobe . . Prior { 1T
palm tree - .
: : Scores with Scores with
e pickup truck . - supervise d - observed labels unobserved labels
=tb apple - optimizer : . Model
S ESH castle : learning : ode Q | @
- S u = Scores )
| |

Calibration

O

bicycle

0.10 A

action

|
- Recalibrated parameters
. Scores @
|

‘ outcome reward

> > =

p— . n=r@ld) i)

|

0.05 A

(2 :: it .
i -
:! ]
| |
. -
: : i=1,-,n j=1,-,ny
0.4 0.5 0.6 0.7 0.8 0.9 1.0 ] n Classes g
| | | |
| | | |
||

Accuracy

[Ji, Logan, Smyth, Steyvers 2019 ICML UDL | : [Ji, Logan, Smyth, Steyvers 2021 AAAI?]

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Label-efficient Bayesian Assessment of Black-box Classitfiers NE
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Bayesian assessment - active Bayesian assessment : assess with unlabeled data
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EXPERIMENTS: BAYESIAN ESTIMATION OF ECE

ECE estimation error

ECE estimation error
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USE SELF-ASSESSMENT AS INFORMATIVE PRIOR ‘
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COMPARISONS WITH ALTERNATIVE ACTIVE LEARNING ALGORITHMS:
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COMPARISONS BETWEEN TS AND TTTS i
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Table 4.4: Calibration Coverage of Posterior Credible Intervals Comparison, across
1000 runs of labeled samples of different sizes nj, for 10 different dataset-group combinations
(rows). Estimation methods are BC (Bayesian-Calibration) and BB (beta-bernoulli). Trained

model is multi-layer perceptron.

nr, = 10 nr, = 20 nr, = 40 nr = 100

Group BC BB BC BB BC BB BC BB
Adult, Race 99.9 97.7 98.6 93.5 96.2 93.2 92.3 95.3
Adult, Gender 100.0 96.4 99.7 95.5 99.2 94.9 96.8 95.5
Bank, Age 99.4  98.7 98.8 98.5 98.0 96.4 93.7 95.3
German, age 99.9 98.8 99.6 98.1 99.0 98.3 96.9 98.3
German, Gender 99.1 974 99.1 974 97.7 96.4 94.6 97.8
Compas-R, Race 99.3  98.8 99.4 97.2 99.1 96.7 99.3 96.6
Compas-R, Gender 99.3 97.7 99.3 97.0 98.6 95.9 97.6 96.5
Compas-VR, Race 99.6 100.0 08.6 97.8 97.9 95.2 97.5 93.1
Compas-VR, Gender 96.3 97.2 94.3 96.5 95.4 96.1 95.8 97.1
Ricci, Race 93.2  99.7 91.4 99.7 — — — —

Label-efficient Bayesian Assessment of Black-box Classitfiers
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COMPARISONS WITH LLO CALIBRATION &

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes

Group n BC LLO BC LLO BC LLO BC LLO
Adult 10 3.9 3.8 2.9 2.8 3.2 3.2 3.6 3.5
Race 100 3.5 3.4 3.2 3.1 3.1 2.9 2.8 2.4

1000 1.6 2.3 1.7 2.0 1.4 1.5 1.4 1.6

Adult 10 5.1 5.1 2.2 2.3 4.8 4.7 5.4 5.0
Gender 100 4.4 4.3 1.9 2.0 4.1 3.7 2.7 2.7
1000 1.6 2.2 1.1 1.0 2.0 1.5 1.1 1.1

Bank 10 2.5 2.3 1.4 1.2 1.0 0.9 1.7 1.7

Age 100 2.0 2.0 1.2 1.2 0.9 0.9 1.1 1.2

1000 1.1 1.2 0.7 0.7 0.5 0.5 0.8 0.9

German 10 5.0 4.6 8.7 8.0 8.2 7.5 11.5 10.7
age 100 3.9 4.1 3.8 4.7 4.3 4.0 4.2 6.0

200 3.1 3.9 3.3 4.2 3.3 3.1 3.5 6.0

German 10 8.2 6.4 6.3 5.0 8.6 6.9 6.5 5.3
Gender 100 5.4 5.1 3.7 3.6 4.8 4.5 2.8 3.1
200 3.0 3.4 2.9 2.8 2.9 3.1 2.2 2.9

Compas-R 10 4.2 4.6 4.8 5.2 2.4 2.5 8.4 8.2
Race 100 2.8 4.4 3.4 4.8 1.8 1.4 6.0 5.6

1000 1.6 5.0 1.6 4.4 1.2 1.1 1.8 2.9

Compas-R 10 5.0 4.3 3.8 3.9 4.4 4.1 13.7 13.0
Gender 100 3.3 2.7 2.6 2.3 2.7 2.8 8.0 7.4
1000 1.4 2.1 1.3 1.3 1.4 3.0 1.8 2.4
Compas-VR 10 4.0 3.9 4.4 4.7 2.4 2.9 6.5 6.4
Race 100 3.1 2.8 3.4 3.3 2.0 2.1 3.7 3.6

1000 0.8 1.5 0.8 0.8 0.8 2.5 0.9 1.8
Compas-VR 10 5.4 4.8 5.3 5.2 6.3 8.2 9.8 9.0
Gender 100 3.4 3.0 3.1 3.3 4.4 5.4 4.5 4.2
1000 0.9 1.2 0.9 1.5 1.0 1.7 0.9 0.9

Ricei 10 14.6 14.2 7.9 8.1 2.1 2.0 1.6 2.1
Race 20 9.8 13.6 7.1 6.6 1.5 1.6 2.1 2.5

30 6.5 12.1 4.6 4.2 1.1 1.4 2.0 2.3
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IS THE HIERARCHICAL STRUCTURE NECESSARY?

Multi-layer Perceptron

Logistic Regression

Random Forest

Gaussian Naive Bayes

Group n BB NHBC BC BB NHBC BC BB NHBC BC BB NHBC BC
Adult 10 18.4 3.2 3.9 18.8 2.7 29 18.1 2.8 32 18.9 4.5 3.6
Race 20 16.1 3.3 4.4 16.7 29 34 16.3 3.0 3.7 16.8 4.1 3.7

40 13.1 2.8 4.5 14.0 2.9 3.7 14.4 2.9 38 144 3.7 3.3

100 8.6 2.7 3.5 9.2 3.0 32 9.0 2.6 3.1 9.6 2.4 2.8

1000 2.5 1.4 1.6 2.3 2.1 1.7 2.1 0.7 14 2.3 1.8 1.4

Adult 10 17.4 4.1 5.1 16.3 26 2.2 17.3 53 4.8 16.3 7.2 5.4
Gender 20 12.9 4.4 5.1 12.2 26 2.2 12.4 53 4.9 11.6 6.7 4.5
40 9.0 4.1 4.9 9.2 2.5 2.1 9.6 5.1 4.5 9.7 6.3 3.9

100 5.4 3.1 4.4 5.5 20 2.0 5.9 4.7 4.1 6.0 4.8 2.7

1000 1.9 1.4 1.6 1.7 1.0 1.1 1.5 1.8 20 1.5 0.9 1.0

Bank 10 14.0 1.7 2.5 12.8 1.5 1.4 11.2 1.1 1.0 13.7 1.4 1.7
Age 20 11.6 2.3 2.9 10.9 1.9 1.7 8.8 1.4 1.2 10.3 1.6 1.7

40 8.0 2.3 2.6 7.3 1.7 1.4 6.5 1.5 1.1 7.5 1.7 1.5

100 4.3 2.2 2.0 4.3 14 1.2 4.2 1.2 0.9 4.9 1.3 1.1

1000 1.5 1.2 1.1 1.6 08 0.7 1.4 0.6 0.5 1.7 0.7 0.8

German 10 19.7 5.6 5.0 21.3 10.3 8.7 19.1 8.2 82 20.4 14.2 11.5
age 20 18.1 6.0 4.4 18.6 6.7 6.4 16.7 7.0 7.0 18.8 9.9 9.0

40 15.9 6.7 4.8 15.0 5.6 4.9 11.7 6.6 5.8 14.9 6.4 6.9

100 7.9 5.8 3.9 7.5 55 3.8 8.2 6.5 4.3 9.1 4.4 4.2

200 4.2 3.7 3.1 4.4 41 3.3 4.7 41 3.3 4.7 3.8 3.5

German 10 21.5 10.5 8.2 17.6 7.0 6.3 19.4 8.5 8.6 20.0 5.9 6.5
Gender 20 16.2 10.0 7.8 13.2 7.1 5.1 14.1 84 7.8 15.4 5.9 4.9
40 11.6 9.2 6.6 11.4 8.4 4.5 11.1 7.7 5.9 11.1 6.1 3.8

100 7.1 6.5 5.4 6.9 6.6 3.7 7.0 6.1 4.8 5.9 6.4 2.8

200 3.2 3.3 3.0 4.0 4.0 2.9 3.6 34 29 4.0 4.0 2.2
Compas-R 10 21.1 2.9 4.2 20.7 4.0 48 20.3 1.4 24 23.1 6.6 8.4
Race 20 14.8 2.8 3.3 15.2 3.9 3.8 15.8 2.0 25 16.6 7.8 8.0
40 11.7 3.0 3.0 12.1 3.9 3.6 11.6 2.0 20 10.9 9.9 8.1

100 6.8 2.9 2.8 7.4 3.7 3.4 8.5 21 1.8 7.9 7.7 6.0

1000 2.0 1.5 1.6 1.9 1.6 1.7 1.9 1.3 1.2 1.9 1.9 1.8
Compas-R 10 21.3 3.8 5.0 22.0 34 38 23.4 3.5 44 25.4 19.1 13.7
Gender 20 18.5 3.8 5.1 18.4 3.3 4.0 17.4 3.3 46 21.4 23.8 12.3
40 12.2 3.4 4.0 13.0 3.0 3.3 13.7 2.8 3.6 15.0 23.8 9.5

100 8.8 3.2 3.3 9.1 2.7 2.6 8.5 2.1 2.7 9.8 15.5 8.0

1000 2.0 1.7 1.4 2.2 14 1.3 2.4 16 1.4 1.9 1.9 1.8
Compas-VR 10 17.4 4.0 4.0 15.6 4.4 44 15.7 26 24 19.7 6.1 6.5
Race 20 13.5 4.7 4.3 13.7 5.0 4.8 13.6 33 29 15.9 10.7 6.5

40 9.6 4.5 3.8 9.6 45 3.9 9.9 3.1 24 11.1 8.8 5.5

100 5.6 3.6 3.1 5.2 38 34 6.2 26 2.0 6.6 6.8 3.7

1000 0.9 0.8 0.8 0.9 0.8 08 0.9 0.8 0.8 1.1 1.2 0.9
Compas-VR 10 17.2 5.6 5.4 16.8 5.7 5.3 19.0 5.8 6.3 21.3 18.9 9.8
Gender 20 13.3 5.4 5.1 14.1 54 4.9 14.0 5.7 6.2 16.0 28.2 8.7
40 9.3 5.1 4.7 9.7 49 4.5 10.5 5.3 5.7 12.4 30.9 6.9

100 6.4 3.7 3.4 5.9 35 3.1 6.3 4.2 44 7.1 18.5 4.5

1000 1.0 0.8 0.9 1.0 09 09 0.9 0.9 1.0 1.4 0.9 0.9

Ricei 10 17.7 16.1 14.6 14.4 7.5 7.9 12.2 1.9 2.1 13.1 1.7 1.6
Race 20 11.2 11.8 9.8 9.3 72 7.1 8.5 1.5 1.5 9.5 2.0 2.1

30 7.4 7.7 6.5 5.8 5.1 4.6 6.0 1.1 1.1 6.4 1.9 2.0
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SENSITIVITY ANALYSIS FOR THE CALIBRATION PRIORS -

Multi-layer Perceptron Logistic Regression Random Forest Gaussian Naive Bayes
Method 10 100 1000 10 100 1000 10 100 1000 10 100 1000 :, N(04a),ga ~ TN(0,.15a) :
BB 18.52 8.48 2.46 18.74 9.14 2.30 1824 9.00 2.12 18.88 9.54 232 :
BC,a=0.1 263 260 227 246 249 213 287 284 243 467 451 o078 Mo~ N(04a),0 ~TN(0, 150
BC, a=0.2 2.63 2.56 2.08 246 2.51 2.06 285 283 2.09 4.63 3.95 0.82 tte ~ N(0,20), o, ~ TN(0, .75a)
BC, a=0.3 2.60 2.52 1.88 242 251 1.95 285 2.79 1.86 4.44 3.36 0.97  TrrTTnnTTnnmEmmmmmEmmEmmmEEmmmmmEmmmmmmEmaa '
BC, a=0.4 249 246 1.74 241 257 1.90 2714 282 1.70 4.25 3.06 1.11
BC, a=0.5 249 238 1.71 244 260 1.82 282 277 165 4.01 2.86 1.43
BC, a=0.6 247 237 1.62 255 262 1.75 282 2.88 1.60 3.81 2.79 1.46
BC, a=0.7 2.61 2.48 1.51 236 263 1.70 290 2.86 1.54 3.54 2.80 1.50
BC, a=0.8 2.86 2.30 1.47 252 273 1.63 287 286 146 3.01 2.77 1.60
BC, a=0.9 2.93 2.27 1.43 244 282 1.64 287 290 146 3.14 291 1.58
BC, a=1.0 3.0 231 1.50 271 2.74 1.57 299 296 142 3.31 2.85 1.68
BC, a=1.1 3.14 237 1.45 265 286 1.55 290 3.10 1.40 3.25 3.03 1.65
BC, a=1.2 3.11 2.19 1.49 273 2.80 1.52 327 3.01 1.39 3.20 3.03 1.68
BC, a=1.3 3.48 2.30 1.51 291 294 1.54 3.11 3.21 1.39 3.15 2.96 1.71
BC, a=14 3.76 2.28 1.47 3.17 3.01 1.51 326 3.21 1.30 3.48 3.21 1.75
BC, a=1.5 3.67 2.20 1.49 3.12 294 1.51 3.46 3.05 1.34 3.23 3.19 1.66
BC, a=1.6 4.06 2.24 1.45 3.26 293 147 3.56 3.13 1.33 3.48 3.17 1.69
BC, a=1.7 4.02 2.27 1.46 346 3.15 146 3.75 3.10 1.27 3.43 3.19 1.74
BC, a=1.8 4.35 2.14 1.42 3.36 3.09 1.50 3.76  3.26 1.29 3.67 3.22 1.81
BC, a=1.9 4.35 2.30 1.48 348 294 1.42 3.54 330 1.28 3.82 3.35 1.84
BC, a=2.0 4.69 2.16 1.44 3.87 299 1.54 391 346 1.21 3.83 3.18 1.81
BC, a=5.0 8.11 2.54 1.63 6.31 3.32 1.53 5.32 4.13 131 5.25 3.82 2.13
BC, a=10.0 10.39 2.63 1.63 7.18 3.83 1.70 719 441 142 6.32 4.08 2.33
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