### LABEL-EFFICIENT BAYESIAN **ASSESSMENT OF BLACK-BOX CLASSIFIERS**

- **Department of Computer Science** 
  - University of California, Irvine

### **Committee members**:

Chancellor's Professor Padhraic Smyth, chair **Assistant Professor Stephan Mandt Professor Mark Steyvers** 

Label-efficient Bayesian Assessment of Black-box Classifiers

### **Disi Ji**

November 18, 2020





Label-efficient Bayesian Assessment of Black-box Classifiers







Label-efficient Bayesian Assessment of Black-box Classifiers





**ECONOMICS & SOCIETY** 

### Al Can Make Bank Loans More Fair

by Sian Townson November 06, 2020

🗐 Summary 🛛 Save 🖆 Share 🖨 Print 🖇 8.95 Buy Copies

As banks increasingly deploy artificial intelligence tools to make credit decisions, they are having to revisit an unwelcome fact about the practice of lending: Historically, it has been riddled with biases against protected characteristics, such as race, gender, and sexual orientation. Such biases are evident in institutions' choices in terms of who gets credit and on what terms. In this context, relying on algorithms to make credit decisions instead of deferring to human judgment seems like an obvious fix. What machines lack in warmth, they surely make up for in objectivity, right?

### The lessons we all must learn from the A-levels algorithm debacle

education admissions

Unless action is taken, similar systems will suffer from the same mistakes. And the consequences could be dire





Label-efficient Bayesian Assessment of Black-box Classifiers

**finance decisions** 







**ECONOMICS & SOCIETY** 

### Al Can Make Bank Loans More Fair

by Sian Townson November 06, 2020

🗐 Summary 🛛 Save 🖆 Share 🖨 Print 🖇 8.95 Buy Copies



EMILY LAMBERT | NOV 09, 2020

finance decisions

As banks increasingly deploy artificial intelligence tools to make credit decisions, they are having to revisit an unwelcome fact about the practice of lending: Historically, it has been riddled with biases against protected characteristics, such as race, gender, and sexual orientation. Such biases are evident in institutions' choices in terms of who gets credit and on what terms. In this context, relying on algorithms to make credit decisions instead of deferring to human judgment seems like an obvious fix. What machines lack in warmth, they surely make up for in objectivity, right?

### The lessons we all must learn from the A-levels algorithm debacle

education admissions

Unless action is taken, similar systems will suffer from the same mistakes. And the consequences could be dire





Label-efficient Bayesian Assessment of Black-box Classifiers

SECTIONS ECONOMICS COLLECTIONS ARTIFICIAL INTELLIGENCE STATISTICS







**ECONOMICS & SOCIETY** 

### Al Can Make Bank Loans More Fair

by Sian Townson November 06, 2020

🗐 Summary 🛛 Save 🖆 Share 🖨 Print 🖇 8.95 Buy Copies



medical applications

EMILY LAMBERT | NOV 09, 2020

finance decisions

As banks increasingly deploy artificial intelligence tools to make credit decisions, they are having to revisit an unwelcome fact about the practice of lending: Historically, it has been riddled with biases against protected characteristics, such as race, gender, and sexual orientation. Such biases are evident in institutions' choices in terms of who gets credit and on what terms. In this context, relying on algorithms to make credit decisions instead of deferring to human judgment seems like an obvious fix. What machines lack in warmth, they surely make up for in objectivity, right?

### The lessons we all must learn from the A-levels algorithm debacle

education admissions

Unless action is taken, similar systems will suffer from the same mistakes. And the consequences could be dire





Label-efficient Bayesian Assessment of Black-box Classifiers

SECTIONS ECONOMICS COLLECTIONS ARTIFICIAL INTELLIGENCE STATISTICS

Analysis

### The United States of Risk Assessment: The Machines Influencing Criminal Justice Decisions

In every state, assessment tools help courts decide certain cases or correctional officers determine the supervision and programming an offender receives. But the tools each state uses varies widely, and how they're put into practice varies even more.

By Rhys Dipshan, Victoria Hudgins and Frank Ready | July 13, 2020 at 07:00 AM







**ECONOMICS & SOCIETY** 

### **Al Can Make Bank Loans More Fair**

by Sian Townson November 06, 2020

🗐 Summary 🛛 Save 🖆 Share 🖨 Print **\$8.95** Buy Copies



EMILY LAMBERT | NOV 09, 2020

finance decisions

As banks increasingly deploy artificial intelligence tools to make credit decisions, they are having to revisit an unwelcome fact about the practice of lending: Historically, it has been riddled with biases against protected characteristics, such as race, gender, and sexual orientation. Such biases are evident in institutions' choices in terms of who gets credit and on what terms. In this context, relying on algorithms to make credit decisions instead of deferring to human judgment seems like an obvious fix. What machines lack in warmth, they surely make up for in objectivity, right?

### The lessons we all must learn from the A-levels algorithm debacle

education admissions

Unless action is taken, similar systems will suffer from the same mistakes. And the consequences could be dire





Label-efficient Bayesian Assessment of Black-box Classifiers

COLLECTIONS ARTIFICIAL INTELLIGENCE STATISTICS SECTIONS ECONOMICS

Analysis

### The United States of Risk **Assessment: The Machines Influencing Criminal Justice Decisions**

In every state, assessment tools help courts decide certain cases or correctional officers determine the supervision and programming an offender receives. But the tools each state uses varies widely, and how they're put into practice varies even more.

By Rhys Dipshan, Victoria Hudgins and Frank Ready | July 13, 2020 at 07:00 AM





- Assessment machine learning models independently from the training procedures
  - legal requirement, build consumers' trust in model predictions
  - distribution change at deployment time:
    - Iabel shift [Lipton et al. 2018]
    - corruptions and perturbations [Hendrycks et al. 2019, Ovadia et al. 2019b]
  - models' inability to generalize [Recht et al. 2019]

Label-efficient Bayesian Assessment of Black-box Classifiers

pendently from the training procedures at in model predictions

ycks et al. 2019, Ovadia et al. 2019b] al. 2019]







Assessment machine learning models independently from the training procedures

legal requirement, build consumers' trust in model predictions

- distribution change at deployment time:
  - label shift [Lipton et al. 2018]
  - corruptions and perturbations [Hendrycks et al. 2019, Ovadia et al. 2019b]
- models' inability to generalize [Recht et al. 2019]

### Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, Vaishaal Shankar

We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the focus of intense research for almost a decade, raising the danger of overfitting to excessively reused test sets. By closely following the original dataset creation processes, we test to what extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% – 15% on CIFAR-10 and 11% – 14% on ImageNet. However, accuracy gains on the original test sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models' inability to generalize to slightly "harder" images than those found in the original test sets.



. . .

- And how much **confidence** should we have in this assessment?
- How to **increase our confidence** given the labeling budget?







Confidence of M



![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_7.jpeg)

![](_page_15_Picture_8.jpeg)

![](_page_15_Figure_9.jpeg)

## ROAD MAP

### **Bayesian** assessment

1. Quantify uncertainty of assessment with Bayesian methods, with a set of labeled data

![](_page_16_Figure_3.jpeg)

### active Bayesian assessment

2. Reduce uncertainty of assessment, with actively labeled data selected from a pool of unlabeled data

![](_page_16_Figure_6.jpeg)

Label-efficient Bayesian Assessment of Black-box Classifiers

### assess with **unlabeled** data

3. **Reduce uncertainty** of assessment, by leveraging both labeled and unlabeled data

![](_page_16_Figure_10.jpeg)

![](_page_16_Picture_11.jpeg)

![](_page_16_Picture_13.jpeg)

![](_page_16_Figure_14.jpeg)

## ROAD MAP

### **Bayesian** assessment

### **1. Quantify uncertainty** of assessment with Bayesian methods, with a set of labeled data

![](_page_17_Figure_3.jpeg)

### active Bayesian assessment

2. Reduce uncertainty of assessment, with actively labeled data selected from a pool of unlabeled data

![](_page_17_Figure_6.jpeg)

Label-efficient Bayesian Assessment of Black-box Classifiers

### assess with **unlabeled** data

**3. Reduce uncertainty** of assessment, by leveraging both labeled and unlabeled data

![](_page_17_Figure_10.jpeg)

![](_page_17_Picture_11.jpeg)

![](_page_17_Picture_13.jpeg)

![](_page_17_Picture_14.jpeg)

![](_page_18_Picture_2.jpeg)

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

![](_page_18_Figure_6.jpeg)

![](_page_19_Picture_1.jpeg)

Input: X

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

![](_page_19_Picture_7.jpeg)

![](_page_20_Picture_1.jpeg)

Input: X

![](_page_20_Figure_4.jpeg)

![](_page_20_Picture_5.jpeg)

![](_page_20_Picture_7.jpeg)

![](_page_20_Figure_8.jpeg)

![](_page_21_Picture_1.jpeg)

Input: X

label: y Dog

![](_page_21_Figure_5.jpeg)

![](_page_21_Picture_6.jpeg)

![](_page_21_Picture_7.jpeg)

![](_page_21_Figure_8.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

Label-efficient Bayesian Assessment of Black-box Classifiers

Dog

![](_page_22_Figure_4.jpeg)

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

![](_page_22_Figure_7.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_23_Picture_2.jpeg)

Label-efficient Bayesian Assessment of Black-box Classifiers

Dog

![](_page_23_Figure_4.jpeg)

Accuracy 
$$\theta = \mathbb{E}_{p(x,y)} \mathbb{1}(y = \hat{y})$$
  
Empirical accuracy  $\hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(y_i = \hat{y}_i)$ 

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

![](_page_23_Figure_8.jpeg)

| Deep neural networks are miscalibrated [ <i>Guo et al. 2017</i> ] |       | 1.0        |
|-------------------------------------------------------------------|-------|------------|
|                                                                   |       | 0.9        |
| e.g. ResNet-110 on CIFAR-100                                      |       | 0.8        |
| Reliability diagram                                               |       | 0.7        |
| Expected calibration error (ECE)                                  | acy   | 0.6        |
|                                                                   | ccura | 0.5        |
|                                                                   | A     | $0.4^{-1}$ |
|                                                                   |       | 0.3        |
|                                                                   |       | 0.2        |
|                                                                   |       | 0.1        |
|                                                                   |       | 0.0        |

Reliability diagram for ResNet-110 on CIFAR-100

![](_page_24_Figure_5.jpeg)

![](_page_24_Picture_6.jpeg)

![](_page_24_Picture_7.jpeg)

| Deep neural networks are miscalibrated [ <i>Guo et al. 2017</i> ] |       | 1.0        |
|-------------------------------------------------------------------|-------|------------|
|                                                                   |       | 0.9        |
| e.g. ResNet-110 on CIFAR-100                                      |       | 0.8        |
| Reliability diagram                                               |       | 0.7        |
| Expected calibration error (ECE)                                  | acy   | 0.6        |
|                                                                   | ccura | 0.5        |
|                                                                   | A     | $0.4^{-1}$ |
|                                                                   |       | 0.3        |
|                                                                   |       | 0.2        |
|                                                                   |       | 0.1        |
|                                                                   |       | 0.0        |

Reliability diagram for ResNet-110 on CIFAR-100

Label-efficient Bayesian Assessment of Black-box Classifiers

![](_page_25_Figure_5.jpeg)

![](_page_25_Picture_6.jpeg)

![](_page_25_Picture_7.jpeg)

| Deep neural networks are miscalibrated [ <i>Guo et al. 2017</i> ] |       | 1.0        |
|-------------------------------------------------------------------|-------|------------|
|                                                                   |       | 0.9        |
| e.g. ResNet-110 on CIFAR-100                                      |       | 0.8        |
| Reliability diagram                                               |       | 0.7        |
| Expected calibration error (ECE)                                  | acy   | 0.6        |
|                                                                   | ccura | 0.5        |
|                                                                   | A     | $0.4^{-1}$ |
|                                                                   |       | 0.3        |
|                                                                   |       | 0.2        |
|                                                                   |       | 0.1        |
|                                                                   |       | 0.0        |

Reliability diagram for ResNet-110 on CIFAR-100

![](_page_26_Figure_5.jpeg)

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)

| Deep neural networks are miscalibrated [ <i>Guo et al. 2017</i> ] | 1.0   |
|-------------------------------------------------------------------|-------|
|                                                                   | 0.9   |
| e.g. ResNet-110 on CIFAR-100                                      | 0.8   |
| Reliability diagram                                               | 0.7   |
| Expected calibration error (ECE)                                  | 0.6   |
|                                                                   | 0.5   |
|                                                                   | ₹ 0.4 |
|                                                                   | 0.3   |
|                                                                   | 0.2   |
|                                                                   | 0.1   |
|                                                                   | 0.0   |
|                                                                   |       |

Reliability diagram for ResNet-110 on CIFAR-100 computed with 10,000 data points

![](_page_27_Figure_6.jpeg)

![](_page_27_Picture_7.jpeg)

![](_page_27_Picture_8.jpeg)

![](_page_28_Picture_1.jpeg)

$$= \mathbb{E}_{p(x,y)} \mathbb{1}(y = \hat{y})$$
$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(y_i = \hat{y}_i)$$

![](_page_28_Picture_4.jpeg)

![](_page_28_Picture_5.jpeg)

![](_page_28_Figure_6.jpeg)

![](_page_29_Figure_1.jpeg)

$$= \mathbb{E}_{p(x,y)} \mathbb{1}(y = \hat{y})$$
$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(y_i = \hat{y}_i)$$

![](_page_29_Picture_4.jpeg)

![](_page_29_Picture_5.jpeg)

Accuracy of the k-th predicted class:

$$\theta_k = \mathsf{Beta}(\alpha_k, \beta_k), k = 1, 2, \cdots, K$$

Accuracy

![](_page_30_Figure_4.jpeg)

classwise accuracy for ResNet-110 on CIFAR-100

Label-efficient Bayesian Assessment of Black-box Classifiers

![](_page_30_Picture_8.jpeg)

![](_page_30_Picture_9.jpeg)

Accuracy of the k-th predicted class:

$$\theta_k = \mathsf{Beta}(\alpha_k, \beta_k), k = 1, 2, \cdots, K$$

Accuracy

![](_page_31_Figure_4.jpeg)

**classwise** accuracy for ResNet-110 on CIFAR-100

Label-efficient Bayesian Assessment of Black-box Classifiers

Accuracy of the *b*-th bin:  $\theta_b = \text{Beta}(\alpha_b, \beta_b), b = 1, 2, \cdots, B$ 

![](_page_31_Figure_8.jpeg)

### **binwise** accuracy for ResNet-110 on CIFAR-100

![](_page_31_Picture_10.jpeg)

![](_page_31_Picture_11.jpeg)

# **BAYESIAN ASSESSMENT: HOW CALIBRATED**

![](_page_32_Figure_1.jpeg)

Label-efficient Bayesian Assessment of Black-box Classifiers

![](_page_32_Picture_5.jpeg)

![](_page_32_Picture_6.jpeg)

![](_page_33_Figure_1.jpeg)

Label-efficient Bayesian Assessment of Black-box Classifiers

![](_page_33_Picture_3.jpeg)

![](_page_33_Picture_4.jpeg)

NF

# **BAYESIAN ASSESSMENT: HOW CALIBRATED**

![](_page_34_Figure_1.jpeg)

# **BAYESIAN ASSESSMENT: HOW CALIBRATED**

![](_page_35_Figure_1.jpeg)

classwise accuracy vs classwise ECE ResNet-110 on CIFAR-100

Label-efficient Bayesian Assessment of Black-box Classifiers

motorcycle pickup\_truck

Accuracy of the *b*-th bin of the *k*-th predicted class:

 $\theta_{kb} = \text{Beta}(\alpha_{kb}, \beta_{kb})$ 

 $k = 1, 2, \dots, K; \quad b = 1, 2, \dots, B$ 

![](_page_35_Picture_9.jpeg)
## SUMMARY

| <ul> <li>✓ How accurate?</li> <li>✓ How calibrated?</li> <li>● How fair?</li> <li>●other metrics</li> </ul> |
|-------------------------------------------------------------------------------------------------------------|
| And how much confidence should we have in this assessment?                                                  |
| How to increase our confidence given the labeling budget?                                                   |

Label-efficient Bayesian Assessment of Black-box Classifiers

### classwise accuracy

Accuracy of the k-th predicted class:

 $\theta_k = \text{Beta}(\alpha_k, \beta_k), k = 1, 2, \cdots, K$ 

### **binwise** accuracy(ECE)

Accuracy of the *b*-th bin:

 $\theta_b = \text{Beta}(\alpha_b, \beta_b), b = 1, 2, \cdots, B$ 

### **Classwise** ECE

Accuracy of the *b*-th bin of the *k*-th predicted class:

 $\theta_{kb} = \text{Beta}(\alpha_{kb}, \beta_{kb})$ 

$$k = 1, 2, \dots, K; b = 1, 2, \dots, B$$





RVINE

### ROAD MAP

### **Bayesian** assessment

**1. Quantify uncertainty** of assessment with Bayesian models, with a set of labeled data



## of unlabeled data



Label-efficient Bayesian Assessment of Black-box Classifiers



**2. Reduce uncertainty** of assessment, with actively labeled data selected from a pool

### assess with **unlabeled** data

**3. Reduce uncertainty** of assessment, by leveraging both labeled and unlabeled data









|                                                                                                                                                                            | Partition of<br>Input space         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| classwise accuracy                                                                                                                                                         |                                     |
| Accuracy of the k-th predicted class:<br>$\theta_k = \text{Beta}(\alpha_k, \beta_k), k = 1, 2, \dots, K$                                                                   | Predicted class                     |
| <b>binwise</b> accuracy(ECE)<br>Accuracy of the <i>b</i> -th bin:<br>$\theta_b = \text{Beta}(\alpha_b, \beta_b), b = 1, 2, \dots, B$                                       | Model score                         |
| Classwise ECE                                                                                                                                                              |                                     |
| Accuracy of the <i>b</i> -th bin of the <i>k</i> -th predicted class:<br>$\theta_{kb} = \text{Beta}(\alpha_{kb}, \beta_{kb})$<br>$k = 1, 2, \dots, K;  b = 1, 2, \dots, B$ | Predicted class<br>X<br>model score |

Label-efficient Bayesian Assessment of Black-box Classifiers







**I**RVINE

|                                                                                                                                                                             | Partition of<br>Input space         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| classwise accuracy                                                                                                                                                          |                                     |
| Accuracy of the k-th predicted class:<br>$\theta_k = \text{Beta}(\alpha_k, \beta_k), k = 1, 2, \dots, K$                                                                    | Predicted class                     |
| <b>binwise</b> accuracy(ECE)<br>Accuracy of the <i>b</i> -th bin:<br>$\theta_b = \text{Beta}(\alpha_b, \beta_b), b = 1, 2, \dots, B$                                        | Model score                         |
| Classwise ECE                                                                                                                                                               |                                     |
| Accuracy of the <i>b</i> -th bin of the <i>k</i> -th predicted class:<br>$\theta_{kb} = \text{Beta}(\alpha_{kb}, \beta_{kb})$<br>$k = 1, 2, \dots, K; \ b = 1, 2, \dots, B$ | Predicted class<br>X<br>model score |

Label-efficient Bayesian Assessment of Black-box Classifiers



g = kb





Performance metrics to estimate  $\theta = (\theta_0, \theta_1, \dots, \theta_G)$ **Estimation**: estimate model performance across all groups[1] e.g. minimize RMSE =  $(\sum p_g (\hat{\theta}_g - \theta_g^*)^2)^{\frac{1}{2}}$ Identification: identify extreme groups, e.g. least accurate, least calibrated • e.g. identify  $\hat{g} = \arg \max_{g} \theta_{g}$ **Comparison**: compare performance between two groups • e.g.  $\theta_0 > \theta_1$ ?

[1] Sawade et al. [2010] and Kumar and Raj [2018] use importance sampling and stratified sampling respectively to allocate labeling resources among different groups.









Performance metrics to estimate  $\theta = (\theta_0, \theta_1, \dots, \theta_G)$ • Estimation: estimate model performance across all groups[1] • e.g. minimize RMSE =  $(\sum_{g} p_g (\hat{\theta}_g - \theta_g^*)^2)^{\frac{1}{2}}$ • Identification: identify extreme groups, e.g. least accurate, least calibrated • e.g. identify  $\hat{g} = \arg \max_g \theta_g$ • Comparison: compare performance between two groups • e.g.  $\theta_0 > \theta_1$ ?

[1] Sawade et al. [2010] and Kumar and Raj [2018] use importance sampling and stratified sampling respectively to allocate labeling resources among different groups.

Label-efficient Bayesian Assessment of Black-box Classifiers



ers







Performance metrics to estimate  $\theta = (\theta_0, \theta_1, \dots, \theta_G)$ **Estimation**: estimate model performance across all groups[1] e.g. minimize RMSE =  $(\sum p_g (\hat{\theta}_g - \theta_g^*)^2)^{\frac{1}{2}}$ Identification: identify extreme groups, e.g. least accurate, least calibrated • e.g. identify  $\hat{g} = \arg \max_{g} \theta_{g}$ **Comparison**: compare performance between two groups • e.g.  $\theta_0 > \theta_1$ ?

[1] Sawade et al. [2010] and Kumar and Raj [2018] use importance sampling and stratified sampling respectively to allocate labeling resources among different groups.









Performance metrics to estimate  $\theta = (\theta_0, \theta_1, \dots, \theta_G)$ **Estimation**: estimate model performance across all groups[1] e.g. minimize RMSE =  $(\sum p_g (\hat{\theta}_g - \theta_g^*)^2)^{\frac{1}{2}}$ Identification: identify extreme groups, e.g. least accurate, least calibrated e.g. identify  $\hat{g} = \arg \max_{g} \theta_{g}$ **Comparison**: compare performance between two groups • e.g.  $\theta_0 > \theta_1$ ?

[1] Sawade et al. [2010] and Kumar and Raj [2018] use importance sampling and stratified sampling respectively to allocate labeling resources among different groups.









## **MULTI-ARMED BANDIT PROBLEMS**

- reward probabilities of each arm are not told in advance
- objective: maximize cumulative reward
- exploration-exploitation trade-off
- **budget**: decide when to switch from more exploration to more exploitation
- Sequential decision making









## **ONLINE DECISION SYSTEM**



Label-efficient Bayesian Assessment of Black-box Classifiers





IRVINE

## **ONLINE DECISION SYSTEM**

### the gambler's decision process



Label-efficient Bayesian Assessment of Black-box Classifiers





IRVINE

## **ONLINE DECISION SYSTEM**







## $\mathbf{N}=\mathbf{0}$



Label-efficient Bayesian Assessment of Black-box Classifiers





RVINE

## $\mathbf{N} = \mathbf{0}$







RVINE

### active Bayesian assessment



|                | Assessment Task            | p(	heta)                                                     | $q_{	heta}(z g)$                        | r(z g)                                                                                                                 |
|----------------|----------------------------|--------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Estimation     | Groupwise Accuracy         | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$               | $z \sim \operatorname{Bern}(\theta_g)$  | $p_g \cdot (\operatorname{Var}(\hat{	heta}_g   \mathcal{L}) - \operatorname{Var}(\hat{	heta}_g   \{\mathcal{L}, z\}))$ |
|                | Confusion $Matrix(g = k)$  | $\theta_{\cdot k} \sim \mathrm{Dirichlet}(\alpha_{\cdot k})$ | $z \sim \operatorname{Multi}(\theta_k)$ | $p_k \cdot (\operatorname{Var}(\hat{	heta}_k   \mathcal{L}) - \operatorname{Var}(\hat{	heta}_k   \{\mathcal{L}, z\}))$ |
| Identification | Least Accurate Group       | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$               | $z \sim \operatorname{Bern}(\theta_g)$  | $-\widetilde{	heta}_g$                                                                                                 |
|                | Least Calibrated Group     | $\theta_{gb} \sim \text{Beta}(\alpha_{gb}, \beta_{gb})$      | $z \sim \text{Bern}(\theta_{gb})$       | $\sum_{b=1}^{B} p_{gb} \left  \widetilde{	heta}_{gb} - s_{gb} \right $                                                 |
|                | Most Costly $Class(g = k)$ | $\theta_{\cdot k} \sim \mathrm{Dirichlet}(\alpha_{\cdot k})$ | $z \sim \operatorname{Multi}(\theta_k)$ | $\sum_{j=1}^{K} c_{jk} \widetilde{	heta}_{jk}$                                                                         |
| Comparison     | Accuracy Comparison        | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$               | $z \sim \operatorname{Bern}(\theta_g)$  | $\lambda \{\mathcal{L},(g,z)\}$                                                                                        |





|                | Assessment Task            | p(	heta)                                                  | $q_{	heta}(z g)$                        | r(z g)                                                                                                                   |
|----------------|----------------------------|-----------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Estimation     | Groupwise Accuracy         | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$            | $z \sim \operatorname{Bern}(\theta_g)$  | $p_g \cdot (\operatorname{Var}(\hat{	heta}_g   \mathcal{L}) - \operatorname{Var}(\hat{	heta}_g   \{\mathcal{L}, z\}))$   |
|                | Confusion $Matrix(g = k)$  | $	heta_{\cdot k} \sim \mathrm{Dirichlet}(lpha_{\cdot k})$ | $z \sim \operatorname{Multi}(\theta_k)$ | $p_k \cdot (\operatorname{Var}(\hat{\theta}_k   \mathcal{L}) - \operatorname{Var}(\hat{\theta}_k   \{\mathcal{L}, z\}))$ |
| Identification | Least Accurate Group       | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$            | $z \sim \operatorname{Bern}(\theta_g)$  | $-\widetilde{	heta}_g$                                                                                                   |
|                | Least Calibrated Group     | $\theta_{gb} \sim \text{Beta}(\alpha_{gb}, \beta_{gb})$   | $z \sim \text{Bern}(\theta_{gb})$       | $\sum_{b=1}^{B} p_{gb} \left  \widetilde{	heta}_{gb} - s_{gb} \right $                                                   |
|                | Most Costly $Class(g = k)$ | $	heta_{\cdot k} \sim \mathrm{Dirichlet}(lpha_{\cdot k})$ | $z \sim \operatorname{Multi}(\theta_k)$ | $\sum_{j=1}^{K} c_{jk} \widetilde{	heta}_{jk}$                                                                           |
| Comparison     | Accuracy Comparison        | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$            | $z \sim \operatorname{Bern}(\theta_g)$  | $\lambda \{\mathcal{L},(g,z)\}$                                                                                          |





|                | Assessment Task            | p(	heta)                                                     | $q_{	heta}(z g)$                        | r(z g)                                                                                                                 |
|----------------|----------------------------|--------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Estimation     | Groupwise Accuracy         | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$               | $z \sim \operatorname{Bern}(\theta_g)$  | $p_g \cdot (\operatorname{Var}(\hat{	heta}_g   \mathcal{L}) - \operatorname{Var}(\hat{	heta}_g   \{\mathcal{L}, z\}))$ |
|                | Confusion $Matrix(g = k)$  | $\theta_{\cdot k} \sim \mathrm{Dirichlet}(\alpha_{\cdot k})$ | $z \sim \operatorname{Multi}(\theta_k)$ | $p_k \cdot (\operatorname{Var}(\hat{	heta}_k   \mathcal{L}) - \operatorname{Var}(\hat{	heta}_k   \{\mathcal{L}, z\}))$ |
| Identification | Least Accurate Group       | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$               | $z \sim \operatorname{Bern}(\theta_g)$  | $-\widetilde{	heta}_g$                                                                                                 |
|                | Least Calibrated Group     | $\theta_{gb} \sim \text{Beta}(\alpha_{gb}, \beta_{gb})$      | $z \sim \text{Bern}(\theta_{gb})$       | $\sum_{b=1}^{B} p_{gb} \left  \widetilde{	heta}_{gb} - s_{gb} \right $                                                 |
|                | Most Costly $Class(g = k)$ | $\theta_{\cdot k} \sim \mathrm{Dirichlet}(\alpha_{\cdot k})$ | $z \sim \operatorname{Multi}(\theta_k)$ | $\sum_{j=1}^{K} c_{jk} \widetilde{	heta}_{jk}$                                                                         |
| Comparison     | Accuracy Comparison        | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$               | $z \sim \operatorname{Bern}(\theta_g)$  | $\lambda \{\mathcal{L},(g,z)\}$                                                                                        |





|                | Assessment Task            | p(	heta)                                                     |                                         | r(z g)                                                                                                                   |
|----------------|----------------------------|--------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Estimation     | Groupwise Accuracy         | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$               | $z \sim \operatorname{Bern}(\theta_g)$  | $p_g \cdot (\operatorname{Var}(\hat{\theta}_g   \mathcal{L}) - \operatorname{Var}(\hat{\theta}_g   \{\mathcal{L}, z\}))$ |
|                | Confusion $Matrix(g = k)$  | $\theta_{\cdot k} \sim \mathrm{Dirichlet}(\alpha_{\cdot k})$ | $z \sim \operatorname{Multi}(\theta_k)$ | $p_k \cdot (\operatorname{Var}(\hat{\theta}_k   \mathcal{L}) - \operatorname{Var}(\hat{\theta}_k   \{\mathcal{L}, z\}))$ |
| Identification | Least Accurate Group       | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$               | $z \sim \operatorname{Bern}(\theta_g)$  | $-\widetilde{	heta}_g$                                                                                                   |
|                | Least Calibrated Group     | $\theta_{gb} \sim \text{Beta}(\alpha_{gb}, \beta_{gb})$      | $z \sim \text{Bern}(\theta_{gb})$       | $\sum_{b=1}^{B} p_{gb} \left  \widetilde{	heta}_{gb} - s_{gb}  ight $                                                    |
|                | Most Costly $Class(g = k)$ | $\theta_{\cdot k} \sim \mathrm{Dirichlet}(\alpha_{\cdot k})$ | $z \sim \operatorname{Multi}(\theta_k)$ | $\sum_{j=1}^{K} c_{jk} \widetilde{	heta}_{jk}$                                                                           |
| Comparison     | Accuracy Comparison        | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$               | $z \sim \operatorname{Bern}(\theta_g)$  | $\lambda \{\mathcal{L},(g,z)\}$                                                                                          |





|                | Assessment Task            | p(	heta)                                                           | $q_{	heta}(z g)$                        | r(z g)                                                                                                                   |
|----------------|----------------------------|--------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Estimation     | Groupwise Accuracy         | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$                     | $z \sim \operatorname{Bern}(\theta_g)$  | $p_g \cdot (\operatorname{Var}(\hat{\theta}_g   \mathcal{L}) - \operatorname{Var}(\hat{\theta}_g   \{\mathcal{L}, z\}))$ |
|                | Confusion $Matrix(g = k)$  | $\theta_{\cdot k} \sim \operatorname{Dirichlet}(\alpha_{\cdot k})$ | $z \sim \operatorname{Multi}(\theta_k)$ | $p_k \cdot (\operatorname{Var}(\hat{\theta}_k   \mathcal{L}) - \operatorname{Var}(\hat{\theta}_k   \{\mathcal{L}, z\}))$ |
| Identification | Least Accurate Group       | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$                     | $z \sim \operatorname{Bern}(\theta_g)$  | $-\widetilde{	heta}_g$                                                                                                   |
|                | Least Calibrated Group     | $\theta_{gb} \sim \text{Beta}(\alpha_{gb}, \beta_{gb})$            | $z \sim \text{Bern}(\theta_{gb})$       | $\sum_{b=1}^{B} p_{gb} \left  \widetilde{	heta}_{gb} - s_{gb} \right $                                                   |
|                | Most Costly $Class(g = k)$ | $\theta_{\cdot k} \sim \mathrm{Dirichlet}(\alpha_{\cdot k})$       | $z \sim \operatorname{Multi}(\theta_k)$ | $\sum_{j=1}^{K} c_{jk} \widetilde{	heta}_{jk}$                                                                           |
| Comparison     | Accuracy Comparison        | $\theta_g \sim \text{Beta}(\alpha_g, \beta_g)$                     | $z \sim \operatorname{Bern}(\theta_g)$  | $\lambda \{\mathcal{L},(g,z)\}$                                                                                          |





## **EXPERIMENTS: MATERIAL**

- Difference mode, varying size and number of classes
- Kudos to Robby for training the classification models

|               | Mode  | Size             | Classes | Model                                       |
|---------------|-------|------------------|---------|---------------------------------------------|
| CIFAR-100     | Image | 10K              | 100     | ResNet-110                                  |
| ImageNet      | Image | 50K              | 1000    | $\operatorname{ResNet-152}$                 |
| SVHN          | Image | 26K              | 10      | $\operatorname{ResNet-152}$                 |
| 20 Newsgroups | Text  | $7.5 \mathrm{K}$ | 20      | $BERT_{BASE}$                               |
| DBpedia       | Text  | 70K              | 14      | $\operatorname{BERT}_{\operatorname{BASE}}$ |







## **EXAMPLE: IDENTIFY THE LEAST ACCURATE CLASS**

### Percentage of labeled samples needed to identify the least accurate classes

| Dataset       | Top m | UPrior<br>(baseline) | IPrior<br>(our work) | IPrior+TS<br>(our work) |                       |
|---------------|-------|----------------------|----------------------|-------------------------|-----------------------|
| CIFAR-100     | 1     | 81.1                 | 83.4                 | 24.9                    |                       |
|               | 10    | 99.8                 | 99.8                 | 55.1                    |                       |
| ImageNet      | 1     | 96.9                 | 94.7                 | 9.3                     | <b>Dropped by 90%</b> |
|               | 10    | 99.6                 | 98.5                 | 17.1                    |                       |
| SVHN          | 1     | 90.5                 | 89.8                 | 82.8                    |                       |
|               | 3     | 100.0                | 100.0                | 96.0                    |                       |
| 20 Newsgroups | 1     | 53.9                 | 55.4                 | 16.9                    |                       |
|               | 3     | 92.0                 | 92.5                 | 42.5                    |                       |
| DBpedia       | 1     | 8.0                  | <b>7.6</b>           | 11.6                    |                       |
|               | 3     | 91.9                 | 90.2                 | 57.1                    |                       |





## **EXAMPLE: IDENTIFY THE LEAST ACCURATE CLASS**

### Percentage of labeled samples needed to identify the least accurate classes

| Dataset       | Top m | UPrior<br>(baseline) | IPrior<br>(our work) | IPrior+TS<br>(our work) |                       |
|---------------|-------|----------------------|----------------------|-------------------------|-----------------------|
| CIFAR-100     | 1     | 81.1                 | 83.4                 | 24.9                    |                       |
|               | 10    | 99.8                 | 99.8                 | 55.1                    |                       |
| ImageNet      | 1     | 96.9                 | 94.7                 | 9.3                     | <b>Dropped by 90%</b> |
|               | 10    | 99.6                 | 98.5                 | 17.1                    |                       |
| SVHN          | 1     | 90.5                 | 89.8                 | 82.8                    |                       |
|               | 3     | 100.0                | 100.0                | 96.0                    |                       |
| 20 Newsgroups | 1     | 53.9                 | 55.4                 | 16.9                    |                       |
|               | 3     | 92.0                 | 92.5                 | 42.5                    |                       |
| DBpedia       | 1     | 8.0                  | 7.6                  | 11.6                    |                       |
|               | 3     | 91.9                 | 90.2                 | <b>57.1</b>             |                       |

### We obtained similar performance gain across multiple datasets, prediction models, and assessment tasks





## DISCUSSION

### Other Bayesian active learning method to TS?

- Comparisons with alternative active learning algorithms
- e.g. Epsilon-greedy, Bayesian upper-confidence bound
- Thompson sampling is broadly more reliable and more consistent
- TS is not designed for exploration-only problems (best arm identification) Comparisons between TS and top-two TS
- - TS and TTTS gave very similar performance
- **Sensitivity analysis** for hyperparameters
  - appears to be relatively robust to the prior strength





### ROAD MAP

### Bayesian assessment

**1. Quantify uncertainty** of assessment with Bayesian models, with a set of **labeled data** 



### active Bayesian assessment

**2. Reduce uncertainty** of assessment, with **actively labeled data** selected from a pool of unlabeled data



### Label-efficient Bayesian Assessment of Black-box Classifiers

### assess with **unlabeled** data

**3. Reduce uncertainty** of assessment, by leveraging both **labeled and unlabeled data** 









# **IS THE CLASSIFIER REALLY UNFAIR? Classified as negative**

model score of a binary classifier M

**Equality of opportunity:** equal TPR across different groups<sup>[1]</sup>

Due to small sample size, the estimated TPR is noisy!

[1] "Equality of Opportunity in Supervised Learning". Hardt, Price & Srebro. NeurIPS 2016.





- people who pay back their loan, have an equal opportunity of getting the loan in the first place"









## MODEL FAIRNESS METRICS WITH UNCERTAINTY **Classified as negative Classified as positive** score of a classifier M



### $\Delta$ TPR between female and male









## **MODEL FAIRNESS METRICS WITH UNCERTAINTY**

### **Classified as negative**

### score of a classifier M



### $\Delta {\rm TPR}$ between female and male

Label-efficient Bayesian Assessment of Black-box Classifiers

### **Classified as positive**









## MODEL FAIRNESS METRICS WITH UNCERTAINTY

### **Classified as negative**

### score of a classifier M



### $\Delta {\rm TPR}$ between female and male

Label-efficient Bayesian Assessment of Black-box Classifiers

**Classified as positive** 



**Q:** The uncertainty is high! How to reduce it? **A:** Collect more data! Labeled or **unlabeled!** 





## **HIGH UNCERTAINTY FOR REAL-WORLD DATA**



whether income exceeds \$50,000 per year

whether the individual has subscribed to a term deposit account or not

frequency-based estimates of the difference in true positive rate (TPR)

Label-efficient Bayesian Assessment of Black-box Classifiers

**COMPAS** (Correctional Offender Management Profiling for Alternative Sanctions) risk assessment tool for recidivism







## HOW MANY LABELED DATA DO I NEED TO COLLECT?

- Simulation:
  - ▶ p(g=0) = 20%
  - groupwise positive rates p(y = 1) are both 20%
  - the true groupwise TPRs are 95% and 90%.
- Compute frequentist estimation of  $\Delta$ TPR for 10000 times

Label-efficient Bayesian Assessment of Black-box Classifiers





RVINE

## HOW MANY LABELED DATA DO I NEED TO COLLECT?

### Simulation:

- ▶ p(g=0) = 20%
- groupwise positive rates p(y = 1) are both 20%
- the true groupwise TPRs are 95% and 90%.
- Compute frequentist estimation of  $\Delta$ TPR for 10000 times



Label-efficient Bayesian Assessment of Black-box Classifiers





**RVINE** 

## HOW MANY LABELED DATA DO I NEED TO COLLECT?

### Simulation:

- ▶ p(g=0) = 20%
- groupwise positive rates p(y = 1) are both 20%
- the true groupwise TPRs are 95% and 90%.
- Compute frequentist estimation of  $\Delta$ TPR for 10000 times



| Dataset                    | Test Size | G            | p(g=0)      | p(y=1) |
|----------------------------|-----------|--------------|-------------|--------|
| Adult                      | 10054     | gender, race | 0.68,  0.86 | 0.25   |
| Bank                       | 13730     | age          | 0.45        | 0.11   |
| German                     | 334       | age, gender  | 0.79,0.37   | 0.17   |
| Compas-R                   | 2056      | gender, race | 0.7,  0.85  | 0.69   |
| $\operatorname{Compas-VR}$ | 1337      | gender, race | 0.8,  0.34  | 0.47   |
| Ricci                      | 40        | race         | 0.65        | 0.50   |







Label-efficient Bayesian Assessment of Black-box Classifiers

RVINE




Label-efficient Bayesian Assessment of Black-box Classifiers

### **REDUCE UNCERTAINTY OF FAIRNESS WITH MORE UNLABELED DATA**

#### **Classified as positive**

performance on unlabeled data



- #labeled data in some groups is small: use Hierarchical Bayesian calibration to share statistical strength among groups
- Variance of the estimates is high: augment with unlabeled data by predicting labeling outcomes with BC
- Calibration model: any parametric calibration model, e.g. Beta calibration











## **EXAMPLE: ASSESS DELTA TPR OF COMPAS RECIDIVISM**



With **10** labeled data and ~**2000** unlabeled data, error in estimating TPR is **5%** for our method versus 20% with only labeled data





## **EXAMPLE: ASSESS DELTA TPR OF COMPAS RECIDIVISM**



With **10** labeled data and ~**2000** unlabeled data, error in estimating TPR is **5%** for our method versus 20% with only labeled data

#### We obtained similar performance gain across multiple dataset-attribute combinations, prediction models, and fairness metrics





### DISCUSSION

- bias-variance tradeoff
- potential **error in the calibration mapping** (e.g., due to misspecification of the parametric form of the calibration function) to **error in the estimate of \Delta itself**

**Lemma 4.5.1.** Given a prediction model M and score distribution P(s), let  $f_q(s; \phi_q)$ :  $[0,1] \rightarrow [0,1]$  denote the calibration model for group g; let  $f_g^*(s) : [0,1] \rightarrow [0,1]$  be the optimal calibration function which maps  $s = P_M(\hat{y} = 1|g)$  to P(y = 1|g); and  $\Delta^*$  is the true value of the metric. Then the absolute error of the expected estimate w.r.t.  $\phi$  can be bounded as:  $|\mathbb{E}_{\phi}\Delta - \Delta^*| \leq \|\bar{f}_0 - f_0^*\|_1 + \|\bar{f}_1 - f_1^*\|_1$ , where  $\bar{f}_g(s) = \mathbb{E}_{\phi_g}f_g(s;\phi_g), \forall s \in [0,1]$ , and  $\|\cdot\|_1$  is the expected L1 distance w.r.t. P(s|g).





### DISCUSSION

#### **Calibration of the posterior probability**

- > a perfectly calibrated 95% credible interval would have 95% coverage.
- generally not far from 95% there is room for improvement (model misspecification)

#### How about other calibration models?

- comparisons with an alternative calibration model, i.e. LLO calibration
- two calibration methods tends to be very similar

#### Is the hierarchical structure necessary?

- ablation study by comparing with non-hierarchical Bayesian calibration
- Hierarchical structure helps with avoiding occasional catastrophic errors

#### Sensitivity analysis for the calibration priors

robust to the settings of prior variances

Label-efficient Bayesian Assessment of Black-box Classifiers

## val would have 95% coverage. for improvement (model misspecification)

on model, i.e. LLO calibration similar

erarchical Bayesian calibration coccasional catastrophic errors

UCIE





#### **Bayesian** assessment

1. Quantify uncertainty of assessment with Bayesian models, with a set of **labeled data** 





Label-efficient Bayesian Assessment of Black-box Classifiers

### assess with **unlabeled** data

#### 3. Reduce uncertainty of assessment, by leveraging both labeled and unlabeled data









Bayesian estimation of performance metrics

- (1) accuracy, reliability diagram, ECE
- (2) Performance difference
- (3) Confusion matrix, misclassification cost

Use self-assessment as informative priors

#### **Bayesian** assessment

1. Quantify uncertainty of assessment with Bayesian models, with a set of **labeled data** 





## unlabeled data



#### [Ji, Logan, Smyth, Steyvers 2019 ICML UDL]

Label-efficient Bayesian Assessment of Black-box Classifiers

#### active Bayesian assessment

2. Reduce uncertainty of assessment, with actively labeled data selected from a pool of

### assess with **unlabeled** data

#### 3. Reduce uncertainty of assessment, by leveraging both labeled and unlabeled data









Bayesian estimation of performance metrics

(1) accuracy, reliability diagram, ECE



#### [Ji, Logan, Smyth, Steyvers 2019 ICML UDL ] [Ji, Logan, Smyth, Steyvers 2021 AAAI?]

Label-efficient Bayesian Assessment of Black-box Classifiers

Developed active assessment framework for (1) estimation of model performance;

### assess with **unlabeled** data

#### 3. Reduce uncertainty of assessment, by leveraging both labeled and unlabeled data









Bayesian estimation of performance metrics

(1) accuracy, reliability diagram, ECE



#### [Ji, Logan, Smyth, Steyvers 2019 ICML UDL ]

Label-efficient Bayesian Assessment of Black-box Classifiers

- Developed active assessment framework for (1) estimation of model performance;

#### [Ji, Logan, Smyth, Steyvers 2021 AAAI?]

- (1) Proposed a comprehensive Bayesian treatment of fairness assessment
- (2) Developed a new hierarchical Bayesian model to leverage information from both unlabeled and labeled examples

### assess with **unlabeled** data

3. Reduce uncertainty of assessment, by leveraging both labeled and unlabeled data



[Ji, Smyth, Steyvers 2020 NeurIPS]









## **LIST OF PUBLICATIONS**

- Bayesian Evaluation of Black-Box Classifiers. [Ji, Logan, Smyth, Steyvers ICML UDL 2019]
- Steyvers NeurIPS 2020]
- Active Bayesian Assessment for Black-Box Classifiers. [Ji, Logan, Smyth, Steyvers AAAI 2021?]

Label-efficient Bayesian Assessment of Black-box Classifiers

Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference. [Ji, Smyth,







## **LIST OF PUBLICATIONS**

- Bayesian Evaluation of Black-Box Classifiers. [Ji, Logan, Smyth, Steyvers ICML UDL 2019]
- **Steyvers NeurIPS 2020**]
- Active Bayesian Assessment for Black-Box Classifiers. [Ji, Logan, Smyth, Steyvers AAAI 2021?]

#### Automated diagnosis of Leukemia with cytometry data analysis

- Mondrian Processes for Flow Cytometry Analysis. [Ji, Nalisnick, Smyth NeurIPS ML4H 2017]
- Bayesian Trees for Automated Cytometry Data Analysis. [Ji, Nalisnick, Qian, Scheuermann, Smyth MLHC 2018]
- Learning Discriminative Gating Representations for Cytometry Data. [Ji, Putzel, Qian, Scheuermann, Bui, Wang, Smyth ICML Workshop on Computational Biology 2019]
- Optimization of Automated Gating for Clinical Diagnosis using Discriminative Gates. [Ji, Putzel, Qian, Scheuermann, Bui, Wang, Smyth Cytometry: Part A 2019]

Label-efficient Bayesian Assessment of Black-box Classifiers

Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference. [Ji, Smyth,



## **EXPERIMENTS: BAYESIAN ESTIMATION OF ECE**







## **USE SELF-ASSESSMENT AS INFORMATIVE PRIOR**







# **BAYESIAN RELIABILITY DIAGRAMS**









### **COMPARISONS WITH ALTERNATIVE ACTIVE LEARNING ALGORITHMS**<sup>3</sup>



Label-efficient Bayesian Assessment of Black-box Classifiers

#### Least accuracy classes





## **COMPARISONS BETWEEN TS AND TTTS**



Label-efficient Bayesian Assessment of Black-box Classifiers

#### Least accuracy classes











## **COMPARISONS BETWEEN IPRIOR+TS AND UPRIOR+TS**



Label-efficient Bayesian Assessment of Black-box Classifiers

#### Least accuracy classes



## **SENSITIVITY ANALYSIS FOR HYPERPARAMETERS**



Least accuracy classes





## $\Delta FPR ESTIMATION$







## (FAIRNESS) CALIBRATION OF THE POSTERIOR PROBABILITY®

Table 4.4: Calibration Coverage of Posterior Credible Intervals Comparison, across 1000 runs of labeled samples of different sizes  $n_L$  for 10 different dataset-group combinations (rows). Estimation methods are BC (Bayesian-Calibration) and BB (beta-bernoulli). Trained model is multi-layer perceptron.

|                   | $n_L = 10$ |       |   | $n_{L} = 20$ |      |  | $n_L = 40$ |      |  | $n_L =$ | 100  |
|-------------------|------------|-------|---|--------------|------|--|------------|------|--|---------|------|
| Group             | BC         | BB    | _ | BC           | BB   |  | BC         | BB   |  | BC      | BB   |
| Adult, Race       | 99.9       | 97.7  |   | 98.6         | 93.5 |  | 96.2       | 93.2 |  | 92.3    | 95.3 |
| Adult, Gender     | 100.0      | 96.4  |   | 99.7         | 95.5 |  | 99.2       | 94.9 |  | 96.8    | 95.5 |
| Bank, Age         | 99.4       | 98.7  |   | 98.8         | 98.5 |  | 98.0       | 96.4 |  | 93.7    | 95.3 |
| German, age       | 99.9       | 98.8  |   | 99.6         | 98.1 |  | 99.0       | 98.3 |  | 96.9    | 98.3 |
| German, Gender    | 99.1       | 97.4  |   | 99.1         | 97.4 |  | 97.7       | 96.4 |  | 94.6    | 97.8 |
| Compas-R, Race    | 99.3       | 98.8  |   | 99.4         | 97.2 |  | 99.1       | 96.7 |  | 99.3    | 96.6 |
| Compas-R, Gender  | 99.3       | 97.7  |   | 99.3         | 97.0 |  | 98.6       | 95.9 |  | 97.6    | 96.5 |
| Compas-VR, Race   | 99.6       | 100.0 |   | 98.6         | 97.8 |  | 97.9       | 95.2 |  | 97.5    | 93.1 |
| Compas-VR, Gender | 96.3       | 97.2  |   | 94.3         | 96.5 |  | 95.4       | 96.1 |  | 95.8    | 97.1 |
| Ricci, Race       | 93.2       | 99.7  |   | 91.4         | 99.7 |  |            |      |  |         |      |



## **COMPARISONS WITH LLO CALIBRATION**

|           |      | Multi-la | yer Perceptron | Logist | ic Regression | Rande | om Forest | Gaussian Naive Bayes |      |  |
|-----------|------|----------|----------------|--------|---------------|-------|-----------|----------------------|------|--|
| Group     | n    | BC       | LLO            | BC     | LLO           | BC    | LLO       | BC                   | LLO  |  |
| Adult     | 10   | 3.9      | 3.8            | 2.9    | 2.8           | 3.2   | 3.2       | 3.6                  | 3.5  |  |
| Race      | 100  | 3.5      | 3.4            | 3.2    | 3.1           | 3.1   | 2.9       | 2.8                  | 2.4  |  |
|           | 1000 | 1.6      | 2.3            | 1.7    | 2.0           | 1.4   | 1.5       | 1.4                  | 1.6  |  |
| Adult     | 10   | 5.1      | 5.1            | 2.2    | 2.3           | 4.8   | 4.7       | 5.4                  | 5.0  |  |
| Gender    | 100  | 4.4      | 4.3            | 1.9    | 2.0           | 4.1   | 3.7       | 2.7                  | 2.7  |  |
|           | 1000 | 1.6      | 2.2            | 1.1    | 1.0           | 2.0   | 1.5       | 1.1                  | 1.1  |  |
| Bank      | 10   | 2.5      | 2.3            | 1.4    | 1.2           | 1.0   | 0.9       | 1.7                  | 1.7  |  |
| Age       | 100  | 2.0      | 2.0            | 1.2    | 1.2           | 0.9   | 0.9       | 1.1                  | 1.2  |  |
|           | 1000 | 1.1      | 1.2            | 0.7    | 0.7           | 0.5   | 0.5       | 0.8                  | 0.9  |  |
| German    | 10   | 5.0      | 4.6            | 8.7    | 8.0           | 8.2   | 7.5       | 11.5                 | 10.7 |  |
| age       | 100  | 3.9      | 4.1            | 3.8    | 4.7           | 4.3   | 4.0       | 4.2                  | 6.0  |  |
|           | 200  | 3.1      | 3.9            | 3.3    | 4.2           | 3.3   | 3.1       | 3.5                  | 6.0  |  |
| German    | 10   | 8.2      | 6.4            | 6.3    | 5.0           | 8.6   | 6.9       | 6.5                  | 5.3  |  |
| Gender    | 100  | 5.4      | 5.1            | 3.7    | 3.6           | 4.8   | 4.5       | 2.8                  | 3.1  |  |
|           | 200  | 3.0      | 3.4            | 2.9    | 2.8           | 2.9   | 3.1       | 2.2                  | 2.9  |  |
| Compas-R  | 10   | 4.2      | 4.6            | 4.8    | 5.2           | 2.4   | 2.5       | 8.4                  | 8.2  |  |
| Race      | 100  | 2.8      | 4.4            | 3.4    | 4.8           | 1.8   | 1.4       | 6.0                  | 5.6  |  |
|           | 1000 | 1.6      | 5.0            | 1.6    | 4.4           | 1.2   | 1.1       | 1.8                  | 2.9  |  |
| Compas-R  | 10   | 5.0      | 4.3            | 3.8    | 3.9           | 4.4   | 4.1       | 13.7                 | 13.0 |  |
| Gender    | 100  | 3.3      | 2.7            | 2.6    | 2.3           | 2.7   | 2.8       | 8.0                  | 7.4  |  |
|           | 1000 | 1.4      | 2.1            | 1.3    | 1.3           | 1.4   | 3.0       | 1.8                  | 2.4  |  |
| Compas-VR | 10   | 4.0      | 3.9            | 4.4    | 4.7           | 2.4   | 2.9       | 6.5                  | 6.4  |  |
| Race      | 100  | 3.1      | 2.8            | 3.4    | 3.3           | 2.0   | 2.1       | 3.7                  | 3.6  |  |
|           | 1000 | 0.8      | 1.5            | 0.8    | 0.8           | 0.8   | 2.5       | 0.9                  | 1.8  |  |
| Compas-VR | 10   | 5.4      | 4.8            | 5.3    | 5.2           | 6.3   | 8.2       | 9.8                  | 9.0  |  |
| Gender    | 100  | 3.4      | 3.0            | 3.1    | 3.3           | 4.4   | 5.4       | 4.5                  | 4.2  |  |
|           | 1000 | 0.9      | 1.2            | 0.9    | 1.5           | 1.0   | 1.7       | 0.9                  | 0.9  |  |
| Ricci     | 10   | 14.6     | 14.2           | 7.9    | 8.1           | 2.1   | 2.0       | 1.6                  | 2.1  |  |
| Race      | 20   | 9.8      | 13.6           | 7.1    | 6.6           | 1.5   | 1.6       | 2.1                  | 2.5  |  |
|           | 30   | 6.5      | 12.1           | 4.6    | 4.2           | 1.1   | 1.4       | 2.0                  | 2.3  |  |

Label-efficient Bayesian Assessment of Black-box Classifiers





IRVINE

## IS THE HERARCHICAL STRUCTURE NECESSARY?

|           |      | Mult | i-layer Per | rceptron   | Logis | stic Regre | ssion      | Ra   | ndom For   | rest       | Gaus | ssian Naive Bayes |      |
|-----------|------|------|-------------|------------|-------|------------|------------|------|------------|------------|------|-------------------|------|
| Group     | n    | BB   | NHBC        | BC         | BB    | NHBC       | BC         | BB   | NHBC       | BC         | BB   | NHBC              | BC   |
| Adult     | 10   | 18.4 | 3.2         | 3.9        | 18.8  | 2.7        | 2.9        | 18.1 | 2.8        | 3.2        | 18.9 | 4.5               | 3.6  |
| Race      | 20   | 16.1 | 3.3         | 4.4        | 16.7  | 2.9        | 3.4        | 16.3 | 3.0        | 3.7        | 16.8 | 4.1               | 3.7  |
|           | 40   | 13.1 | 2.8         | 4.5        | 14.0  | 2.9        | 3.7        | 14.4 | 2.9        | 3.8        | 14.4 | 3.7               | 3.3  |
|           | 100  | 8.6  | 2.7         | 3.5        | 9.2   | 3.0        | 3.2        | 9.0  | 2.6        | 3.1        | 9.6  | 2.4               | 2.8  |
|           | 1000 | 2.5  | 1.4         | 1.6        | 2.3   | 2.1        | 1.7        | 2.1  | 0.7        | 1.4        | 2.3  | 1.8               | 1.4  |
| Adult     | 10   | 17.4 | 4.1         | 5.1        | 16.3  | 2.6        | <b>2.2</b> | 17.3 | 5.3        | 4.8        | 16.3 | 7.2               | 5.4  |
| Gender    | 20   | 12.9 | 4.4         | 5.1        | 12.2  | 2.6        | <b>2.2</b> | 12.4 | 5.3        | 4.9        | 11.6 | 6.7               | 4.5  |
|           | 40   | 9.0  | 4.1         | 4.9        | 9.2   | 2.5        | <b>2.1</b> | 9.6  | 5.1        | 4.5        | 9.7  | 6.3               | 3.9  |
|           | 100  | 5.4  | 3.1         | 4.4        | 5.5   | 2.0        | <b>2.0</b> | 5.9  | 4.7        | 4.1        | 6.0  | 4.8               | 2.7  |
|           | 1000 | 1.9  | 1.4         | 1.6        | 1.7   | 1.0        | 1.1        | 1.5  | 1.8        | 2.0        | 1.5  | 0.9               | 1.0  |
| Bank      | 10   | 14.0 | 1.7         | 2.5        | 12.8  | 1.5        | 1.4        | 11.2 | 1.1        | 1.0        | 13.7 | 1.4               | 1.7  |
| Age       | 20   | 11.6 | <b>2.3</b>  | 2.9        | 10.9  | 1.9        | 1.7        | 8.8  | 1.4        | 1.2        | 10.3 | 1.6               | 1.7  |
|           | 40   | 8.0  | <b>2.3</b>  | 2.6        | 7.3   | 1.7        | 1.4        | 6.5  | 1.5        | 1.1        | 7.5  | 1.7               | 1.5  |
|           | 100  | 4.3  | 2.2         | 2.0        | 4.3   | 1.4        | 1.2        | 4.2  | 1.2        | 0.9        | 4.9  | 1.3               | 1.1  |
|           | 1000 | 1.5  | 1.2         | 1.1        | 1.6   | 0.8        | 0.7        | 1.4  | 0.6        | 0.5        | 1.7  | 0.7               | 0.8  |
| German    | 10   | 19.7 | 5.6         | 5.0        | 21.3  | 10.3       | 8.7        | 19.1 | 8.2        | 8.2        | 20.4 | 14.2              | 11.5 |
| age       | 20   | 18.1 | 6.0         | 4.4        | 18.6  | 6.7        | 6.4        | 16.7 | 7.0        | 7.0        | 18.8 | 9.9               | 9.0  |
|           | 40   | 15.9 | 6.7         | 4.8        | 15.0  | 5.6        | 4.9        | 11.7 | 6.6        | <b>5.8</b> | 14.9 | 6.4               | 6.9  |
|           | 100  | 7.9  | 5.8         | 3.9        | 7.5   | 5.5        | <b>3.8</b> | 8.2  | 6.5        | 4.3        | 9.1  | 4.4               | 4.2  |
|           | 200  | 4.2  | 3.7         | 3.1        | 4.4   | 4.1        | 3.3        | 4.7  | 4.1        | 3.3        | 4.7  | 3.8               | 3.5  |
| German    | 10   | 21.5 | 10.5        | 8.2        | 17.6  | 7.0        | 6.3        | 19.4 | 8.5        | 8.6        | 20.0 | 5.9               | 6.5  |
| Gender    | 20   | 16.2 | 10.0        | 7.8        | 13.2  | 7.1        | 5.1        | 14.1 | 8.4        | 7.8        | 15.4 | 5.9               | 4.9  |
|           | 40   | 11.6 | 9.2         | 6.6        | 11.4  | 8.4        | 4.5        | 11.1 | 7.7        | 5.9        | 11.1 | 6.1               | 3.8  |
|           | 100  | 7.1  | 6.5         | 5.4        | 6.9   | 6.6        | <b>3.7</b> | 7.0  | 6.1        | 4.8        | 5.9  | 6.4               | 2.8  |
|           | 200  | 3.2  | 3.3         | 3.0        | 4.0   | 4.0        | 2.9        | 3.6  | 3.4        | 2.9        | 4.0  | 4.0               | 2.2  |
| Compas-R  | 10   | 21.1 | 2.9         | 4.2        | 20.7  | 4.0        | 4.8        | 20.3 | 1.4        | 2.4        | 23.1 | 6.6               | 8.4  |
| Race      | 20   | 14.8 | <b>2.8</b>  | 3.3        | 15.2  | 3.9        | <b>3.8</b> | 15.8 | 2.0        | 2.5        | 16.6 | 7.8               | 8.0  |
|           | 40   | 11.7 | 3.0         | 3.0        | 12.1  | 3.9        | 3.6        | 11.6 | <b>2.0</b> | 2.0        | 10.9 | 9.9               | 8.1  |
|           | 100  | 6.8  | 2.9         | <b>2.8</b> | 7.4   | 3.7        | <b>3.4</b> | 8.5  | 2.1        | 1.8        | 7.9  | 7.7               | 6.0  |
|           | 1000 | 2.0  | 1.5         | 1.6        | 1.9   | 1.6        | 1.7        | 1.9  | 1.3        | 1.2        | 1.9  | 1.9               | 1.8  |
| Compas-R  | 10   | 21.3 | 3.8         | 5.0        | 22.0  | 3.4        | 3.8        | 23.4 | 3.5        | 4.4        | 25.4 | 19.1              | 13.7 |
| Gender    | 20   | 18.5 | <b>3.8</b>  | 5.1        | 18.4  | <b>3.3</b> | 4.0        | 17.4 | 3.3        | 4.6        | 21.4 | 23.8              | 12.3 |
|           | 40   | 12.2 | <b>3.4</b>  | 4.0        | 13.0  | <b>3.0</b> | 3.3        | 13.7 | <b>2.8</b> | 3.6        | 15.0 | 23.8              | 9.5  |
|           | 100  | 8.8  | <b>3.2</b>  | 3.3        | 9.1   | 2.7        | 2.6        | 8.5  | 2.1        | 2.7        | 9.8  | 15.5              | 8.0  |
|           | 1000 | 2.0  | 1.7         | 1.4        | 2.2   | 1.4        | 1.3        | 2.4  | 1.6        | 1.4        | 1.9  | 1.9               | 1.8  |
| Compas-VR | 10   | 17.4 | 4.0         | 4.0        | 15.6  | 4.4        | 4.4        | 15.7 | 2.6        | <b>2.4</b> | 19.7 | 6.1               | 6.5  |
| Race      | 20   | 13.5 | 4.7         | 4.3        | 13.7  | 5.0        | 4.8        | 13.6 | 3.3        | <b>2.9</b> | 15.9 | 10.7              | 6.5  |
|           | 40   | 9.6  | 4.5         | 3.8        | 9.6   | 4.5        | 3.9        | 9.9  | 3.1        | <b>2.4</b> | 11.1 | 8.8               | 5.5  |
|           | 100  | 5.6  | 3.6         | 3.1        | 5.2   | 3.8        | <b>3.4</b> | 6.2  | 2.6        | <b>2.0</b> | 6.6  | 6.8               | 3.7  |
|           | 1000 | 0.9  | 0.8         | 0.8        | 0.9   | 0.8        | 0.8        | 0.9  | 0.8        | 0.8        | 1.1  | 1.2               | 0.9  |
| Compas-VR | 10   | 17.2 | 5.6         | <b>5.4</b> | 16.8  | 5.7        | <b>5.3</b> | 19.0 | 5.8        | 6.3        | 21.3 | 18.9              | 9.8  |
| Gender    | 20   | 13.3 | 5.4         | 5.1        | 14.1  | 5.4        | 4.9        | 14.0 | 5.7        | 6.2        | 16.0 | 28.2              | 8.7  |
|           | 40   | 9.3  | 5.1         | 4.7        | 9.7   | 4.9        | 4.5        | 10.5 | 5.3        | 5.7        | 12.4 | 30.9              | 6.9  |
|           | 100  | 6.4  | 3.7         | <b>3.4</b> | 5.9   | 3.5        | 3.1        | 6.3  | 4.2        | 4.4        | 7.1  | 18.5              | 4.5  |
|           | 1000 | 1.0  | 0.8         | 0.9        | 1.0   | 0.9        | 0.9        | 0.9  | 0.9        | 1.0        | 1.4  | 0.9               | 0.9  |
| Ricci     | 10   | 17.7 | 16.1        | 14.6       | 14.4  | 7.5        | 7.9        | 12.2 | 1.9        | 2.1        | 13.1 | 1.7               | 1.6  |
| Race      | 20   | 11.2 | 11.8        | 9.8        | 9.3   | 7.2        | 7.1        | 8.5  | 1.5        | 1.5        | 9.5  | <b>2.0</b>        | 2.1  |
|           | 30   | 7.4  | 7.7         | 6.5        | 5.8   | 5.1        | 4.6        | 6.0  | 1.1        | 1.1        | 6.4  | 1.9               | 2.0  |





## **SENSITIVITY ANALYSIS FOR THE CALIBRATION PRIORS**

|                      | Multi- | layer P | erceptron | Logist | ic Regi | ression | Rano  | dom Fo | orest | Gauss | Gaussian Naive Bayes |      |                                                             |
|----------------------|--------|---------|-----------|--------|---------|---------|-------|--------|-------|-------|----------------------|------|-------------------------------------------------------------|
| Method               | 10     | 100     | 1000      | 10     | 100     | 1000    | 10    | 100    | 1000  | 10    | 100                  | 1000 | $\mu_a \sim N(0, .4\alpha), \sigma_a \sim TN(0, .15\alpha)$ |
| BB                   | 18.52  | 8.48    | 2.46      | 18.74  | 9.14    | 2.30    | 18.24 | 9.00   | 2.12  | 18.88 | 9.54                 | 2.32 | $\dots N(0, 4n) = TN(0, 15n)$                               |
| BC, $\alpha$ =0.1    | 2.63   | 2.60    | 2.27      | 2.46   | 2.49    | 2.13    | 2.87  | 2.84   | 2.43  | 4.67  | 4.51                 | 0.78 | $\mu_b \sim N(0, .4\alpha), \sigma_b \sim IN(0, .15\alpha)$ |
| BC, $\alpha = 0.2$   | 2.63   | 2.56    | 2.08      | 2.46   | 2.51    | 2.06    | 2.85  | 2.83   | 2.09  | 4.63  | 3.95                 | 0.82 | $\mu_c \sim N(0, 2\alpha), \sigma_c \sim TN(0, .75\alpha)$  |
| BC, $\alpha {=} 0.3$ | 2.60   | 2.52    | 1.88      | 2.42   | 2.51    | 1.95    | 2.85  | 2.79   | 1.86  | 4.44  | 3.36                 | 0.97 |                                                             |
| BC, $\alpha = 0.4$   | 2.49   | 2.46    | 1.74      | 2.41   | 2.57    | 1.90    | 2.74  | 2.82   | 1.70  | 4.25  | 3.06                 | 1.11 |                                                             |
| BC, $\alpha {=} 0.5$ | 2.49   | 2.38    | 1.71      | 2.44   | 2.60    | 1.82    | 2.82  | 2.77   | 1.65  | 4.01  | 2.86                 | 1.43 |                                                             |
| BC, $\alpha {=} 0.6$ | 2.47   | 2.37    | 1.62      | 2.55   | 2.62    | 1.75    | 2.82  | 2.88   | 1.60  | 3.81  | 2.79                 | 1.46 |                                                             |
| BC, $\alpha$ =0.7    | 2.61   | 2.48    | 1.51      | 2.36   | 2.63    | 1.70    | 2.90  | 2.86   | 1.54  | 3.54  | 2.80                 | 1.50 |                                                             |
| BC, $\alpha$ =0.8    | 2.86   | 2.30    | 1.47      | 2.52   | 2.73    | 1.63    | 2.87  | 2.86   | 1.46  | 3.51  | 2.77                 | 1.60 |                                                             |
| BC, $\alpha$ =0.9    | 2.93   | 2.27    | 1.43      | 2.44   | 2.82    | 1.64    | 2.87  | 2.90   | 1.46  | 3.14  | 2.91                 | 1.58 |                                                             |
| BC, $\alpha$ =1.0    | 3.05   | 2.31    | 1.50      | 2.71   | 2.74    | 1.57    | 2.99  | 2.96   | 1.42  | 3.31  | 2.85                 | 1.68 |                                                             |
| BC, $\alpha$ =1.1    | 3.14   | 2.37    | 1.45      | 2.65   | 2.86    | 1.55    | 2.90  | 3.10   | 1.40  | 3.25  | 3.03                 | 1.65 |                                                             |
| BC, $\alpha$ =1.2    | 3.11   | 2.19    | 1.49      | 2.73   | 2.80    | 1.52    | 3.27  | 3.01   | 1.39  | 3.20  | 3.03                 | 1.68 |                                                             |
| BC, $\alpha$ =1.3    | 3.48   | 2.30    | 1.51      | 2.91   | 2.94    | 1.54    | 3.11  | 3.21   | 1.39  | 3.15  | 2.96                 | 1.71 |                                                             |
| BC, $\alpha$ =1.4    | 3.76   | 2.28    | 1.47      | 3.17   | 3.01    | 1.51    | 3.26  | 3.21   | 1.30  | 3.48  | 3.21                 | 1.75 |                                                             |
| BC, $\alpha$ =1.5    | 3.67   | 2.20    | 1.49      | 3.12   | 2.94    | 1.51    | 3.46  | 3.05   | 1.34  | 3.23  | 3.19                 | 1.66 |                                                             |
| BC, $\alpha$ =1.6    | 4.06   | 2.24    | 1.45      | 3.26   | 2.93    | 1.47    | 3.56  | 3.13   | 1.33  | 3.48  | 3.17                 | 1.69 |                                                             |
| BC, $\alpha$ =1.7    | 4.02   | 2.27    | 1.46      | 3.46   | 3.15    | 1.46    | 3.75  | 3.10   | 1.27  | 3.43  | 3.19                 | 1.74 |                                                             |
| BC, $\alpha$ =1.8    | 4.35   | 2.14    | 1.42      | 3.36   | 3.09    | 1.50    | 3.76  | 3.26   | 1.29  | 3.67  | 3.22                 | 1.81 |                                                             |
| BC, $\alpha$ =1.9    | 4.35   | 2.30    | 1.48      | 3.48   | 2.94    | 1.42    | 3.54  | 3.30   | 1.28  | 3.82  | 3.35                 | 1.84 |                                                             |
| BC, $\alpha$ =2.0    | 4.69   | 2.16    | 1.44      | 3.87   | 2.99    | 1.54    | 3.91  | 3.46   | 1.21  | 3.83  | 3.18                 | 1.81 |                                                             |
| BC, $\alpha {=} 5.0$ | 8.11   | 2.54    | 1.63      | 6.31   | 3.32    | 1.53    | 5.32  | 4.13   | 1.31  | 5.25  | 3.82                 | 2.13 |                                                             |
| BC, $\alpha$ =10.0   | 10.39  | 2.63    | 1.63      | 7.18   | 3.83    | 1.70    | 7.19  | 4.41   | 1.42  | 6.32  | 4.08                 | 2.33 |                                                             |



