
Can I Trust My Fairness Metric? 
Assessing Fairness with Unlabeled Data and Bayesian Inference

Summary

Frequentist-based Estimates Have High Variance

Example: assess Δ TPR of COMPAS- Recividism, Race

Quantify Uncertainty of Fairness Assessment
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Ø Equality of opportunity: equal TPR across different groups 
Ø Due to small sample size, the estimated TPRs are noisy!

Ø Contribution: 
Ø 1. Quantify uncertainty in fairness metrics using Bayesian methods
Ø 2. Reduce uncertainty of fairness by leveraging unlabeled data

Experimental Results

Reduce Uncertainty with Unlabeled Data

Ø High variability for the estimated TPRs relative to the true TPRs (shown in 
red) as a function of the number of labeled examples. 

Ø In many cases the estimates are two or three or more times larger than the 
true difference. 

Ø A relatively large percentage of the estimates have the opposite sign of the 
true difference, potentially leading to mistaken conclusions

Illustrative Results: Posterior density (samples) and frequentist estimates (dotted 
vertical blue lines) for the difference in group accuracy with 20 random labeled 
examples for both the BB (beta-binomial) and BC (Bayesian calibration) methods

We treat each "#, % = 1, . . . , )* as a latent variable per example. The high 
level steps of the approach are as follows:

1. Use the )+ labeled examples to estimate groupwise calibration 
functions with parameters ,-, that transform the (potentially) 
uncalibrated scores . of the model to calibrated scores.  More 
specifically, we perform Bayesian inference to obtain posterior samples 
from /(12|4+) for the groupwise calibration parameters 12. 

2. Obtain posterior samples of recalibrated scores from /12("#|4+, .#)
for each unlabeled example % = 1, . . . , )* , conditioned on posterior 
samples of the 12’s.

3. Use posterior samples from the "# ’s, combined with the labeled data, to 
generate estimates of the groupwise metrics 6- and the difference 
in metrics ∆.

For two groups 7 = 0,1, and )+ labeled data 4+:
Ø Groupwise performance metric 92 = /(:; = 1|; = 1, 7)

92 ∼ =>?@ A2, B2

Ø Correctness of the prediction model for C: DE = D F;E = ;E , 1 ≤ C ≤ )+:

DE ∼ =>I)JKLLC 92

Ø Group fairness metric: ∆ = 9N − 9P

Ø Obtain posterior distribution / ∆ 4+ via Monte Carlo samples

With 10 labeled data and ~2000 unlabeled data, error in estimating TPR is 5%
for our method versus 20% with only labeled data

Traditional method, without unlabeled data

Our method, with unlabeled data


