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Quantify Uncertainty of Fairness Assessment Experimental Results
Summary ' For two groups g = 0,1, and n;, labeled data D; : Dataset  Test Size G P(g=0) Py=1)
> Groupwise performance metric 6, = P(y = 1|y = 1,9) Adult 10054  gender,race 0.68,0.86  0.25
0, ~ Beta(ay,, B,) Bank 13730 age 0.45 0.11
> Correctness of the prediction model fori: I; = I(J; = y;), 1 <i < ny: German 334 age, gender  0.79, 0.37 0.17
: Compas-R 2056 gender, race 0.7, 0.85 0.69
collectmore ~ o o o b e e E e X ‘ le = 5/ . . I; ~ Bernoulli(6,) Compas-VR 1337  gender,race 0.8, 0.34 0.47
zesse:pp TPRfor male = 5/5 > Group fairness metric: A= 6, — 6, Ricci 40 race 065 0.50

» Obtain posterior distribution P(A|D;) via Monte Carlo samples
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» Contribution:
> 1. Quantify uncertainty in fairness metrics using Bayesian methods Hyperprior

» 2. Reduce uncertainty of fairness by leveraging unlabeled data

With 10 labeled data and ~2000 unlabeled data, error in estimating TPR is 5%
for our method versus 20% with only labeled data
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n lllustrative Results: Posterior density (samples) and frequentist estimates (dotted
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examples for both the BB (beta-binomial) and BC (Bayesian calibration) methods
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» High variability for the estimated TPRs relative to the true TPRs (shown in from P(¢,4|D,) for the groupwise calibration parameters ¢,. accuracy difference accuracy difference accuracy difference
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