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» Equality of opportunity:

» equal TPR across different groups [Hardt, Price & Srebro, 2016]
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S THE CLASSIFIER REALLY UNFAIR?

Classified as negative Classified as positive
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» TPRfor male =5/5
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score of a classifier M

» Equality of opportunity:
» equal TPR across different groups [Hardt, Price & Srebro, 2016]

» Due to small sample size, the estimated TPRs are noisy!
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» Equality of opportunity:
» equal TPR across different groups [Hardt, Price & Srebro, 2016]
» Due to small sample size, the estimated TPRs are noisy!
» Contribution: quantify uncertainty in fairness metrics using Bayesian methods
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MODEL FAIRNESS METRICS WITH UNCERTAINTY :

Classified as negative Classified as positive

score of a classifier M

Point estimation of ATPR
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MODEL FAIRNESS METRICS WITH UNCERTAINTY :

Classified as negative

Classified as positive

ATPR=2/3-5/5=-1/3

score of a classifier M

Point estimation of ATPR

Posterior of ATPR Q: The uncertainty is high! How to reduce it?

A: Collect more data! Labeled or unlabeled!
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REDUCE UNCERTAINTY OF FAIRNESS WITH MORE UNLABELED DATA-
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EXAMPLE: ASSESS DELIA TPR OF COMPAS RECIDIVISM

Compas-R, Race
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With 10 labeled data and ~2000 unlabeled data, error in estimating ATPR is
5% for our method versus 20% with only labeled data
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50, CAN I TRUST MY FAIRNESS METRIC? :

» Be aware of uncertainty in fairness assessment: especially when test sizes are
relatively small (as is often the case in practice)

» Collect more data, labeled or unlabeled, to make the assessment more reliable

» a new Bayesian methodology that uses calibration to leverage information from
both unlabeled and labeled examples
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