CAN I TRUST MY FAIRNESS METRIC? ASSESSING FAIRNESS WITH UNLABELED DATA & **BAYESIAN INFERENCE**

Disi Ji (UC Irvine)

Disi Ji, Padhraic Smyth, Mark Steyvers

Joint work with **Padhraic Smyth** and **Mark Steyvers** (UC Irvine) NeurIPS 2020, paper#8014

IS THE CLASSIFIER REALLY UNFAIR?

Disi Ji, Padhraic Smyth, Mark Steyvers

score of a classifier M

Disi Ji, Padhraic Smyth, Mark Steyvers

Classified as positive

score of a classifier M

Disi Ji, Padhraic Smyth, Mark Steyvers

Classified as positive

score of a classifier M

- Equality of opportunity:
 - equal TPR across different groups [Hardt, Price & Srebro, 2016]

Disi Ji, Padhraic Smyth, Mark Steyvers

Classified as positive

score of a classifier M

- Equality of opportunity:
 - equal TPR across different groups [Hardt, Price & Srebro, 2016]
- Due to small sample size, the estimated TPRs are noisy!

Disi Ji, Padhraic Smyth, Mark Steyvers

score of a classifier M

- Equality of opportunity:
 - equal TPR across different groups [Hardt, Price & Srebro, 2016]
- Due to small sample size, the estimated TPRs are noisy!
- Contribution: quantify uncertainty in fairness metrics using Bayesian methods

Disi Ji, Padhraic Smyth, Mark Steyvers

MODEL FAIRNESS METRICS WITH UNCERTAINTY **Classified as negative Classified as positive** score of a classifier M

Δ TPR between female and male

Disi Ji, Padhraic Smyth, Mark Steyvers

MODEL FAIRNESS METRICS WITH UNCERTAINTY

Classified as negative

score of a classifier M

Δ TPR between female and male

Disi Ji, Padhraic Smyth, Mark Steyvers

Classified as positive

MODEL FAIRNESS METRICS WITH UNCERTAINTY

Classified as negative

score of a classifier M

Δ TPR between female and male

Disi Ji, Padhraic Smyth, Mark Steyvers

Q: The uncertainty is high! How to reduce it? A: Collect more data! Labeled or unlabeled!

score of a classifier M

Disi Ji, Padhraic Smyth, Mark Steyvers

score of a classifier M

Disi Ji, Padhraic Smyth, Mark Steyvers

REDUCE UNCERTAINTY OF FAIRNESS WITH MORE UNLABELED DATA 4

Classified as positive

Method: train a hierarchical Bayesian calibration model to predict the model performance on unlabeled data

EXAMPLE: ASSESS DELTA TPR OF COMPAS RECIDIVISM

5% for our method versus 20% with only labeled data

Disi Ji, Padhraic Smyth, Mark Steyvers

Compas-R, Race

With 10 labeled data and ~2000 unlabeled data, error in estimating Δ TPR is

SO. CAN I TRUST MY FAIRNESS METRIC?

Be aware of uncertainty in fairness assessment: especially when test sizes are relatively small (as is often the case in practice)

Collect more data, labeled or unlabeled, to make the assessment more reliable

a new Bayesian methodology that uses calibration to leverage information from both unlabeled and labeled examples

Disi Ji, Padhraic Smyth, Mark Steyvers

